مقاله انگلیسی رایگان در مورد استفاده از داده کاوی اطلاعات برای بهبود خدمات کتابخانه دیجیتالی – امرالد ۲۰۱۰
مشخصات مقاله | |
ترجمه عنوان مقاله | استفاده از داده کاوی اطلاعات برای بهبود خدمات کتابخانه دیجیتالی |
عنوان انگلیسی مقاله | Using data mining to improve digital library services |
انتشار | مقاله سال ۲۰۱۰ |
تعداد صفحات مقاله انگلیسی | ۱۶ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه امرالد |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۰٫۹۶۹ در سال ۲۰۱۷ |
شاخص H_index | ۳۲ در سال ۲۰۱۹ |
شاخص SJR | ۰٫۴۴۰ در سال ۲۰۱۷ |
شناسه ISSN | ۰۲۶۴-۰۴۷۳ |
شاخص Quartile (چارک) | Q2 در سال ۲۰۱۷ |
رشته های مرتبط | مهندسی کامپیوتر – فناوری اطلاعات |
گرایش های مرتبط | شبکه های کامپیوتری – داده کاوی – مدیریت فناوری اطلاعات |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | The Electronic Library |
دانشگاه | Faculty of Security Studies, University of Belgrade, Belgrade, Serbia |
کلمات کلیدی | کتابخانه های دیجیتال، پایگاه های داده، مدیریت داده ها، ارائه ی خدمت |
کلمات کلیدی انگلیسی | کتابخانه های دیجیتال، پایگاه های داده، مدیریت داده ها، ارائه ی خدمت |
شناسه دیجیتال – doi |
https://doi.org/10.1108/02640471011093525 |
کد محصول | E11816 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
Introduction Although we are today overwhelmed with data, techniques for finding appropriate information are mostly based on syntax search or low-level multimedia features. For improving search results in interaction with digital libraries (DLs), other more intelligent techniques should be used, based on both top-down knowledge creation (e.g. ontologies, user modeling) and bottom-up automated knowledge extraction (e.g. data mining, web mining) (Chen, 2003). Valuable information extracted from the collection of DL data can be integrated into the library’s strategy, and can be used to improve library search (Chang and Chen, 2006). For an effective design of systems and particularly to help users to find information more easily, it is crucial to understand how people perform searches. This is especially important in continuous development of technologies. By exploring users’ behavior we try to understand better the users themselves and their information needs and provide them with better user-oriented applications. To achieve this goal, we can anticipate a specific user’s needs and problems in advance, by using experience of other similar users. The idea of a recommender system is to help users by advising them on relevant products/information by predicting in advance their interest in a product; this prediction is based on various types of information, e.g. users’ past purchases and product features (Huang et al., 2002). For a DL, user recommendations may be very helpful (Geisler et al., 2001, Liao et al., 2009). To help DL users obtain useful information more easily, we can use data mining techniques. Since data mining techniques are very popular, many researchers have applied them in various domains. However, few are focused on the domain of DLs. Our main objective is to use data mining techniques to recommend specific services to DL users. We have developed the REKOB system to support the users of a specific digital library called KOBSON (http://kobson.nb.rs). In REKOB, we apply different and efficient data mining techniques for clustering DL users based on their profiles and their search behavior. We do not apply data mining to the library documents, but to its services; thereafter we recommend an appropriate service to a new user. By services, we assume online journal services such as Science Direct, Springer, and Blackwell among others. The paper is organized as follows: a review of related work is discussed in section 2; section 3 describes the REKOB system architecture; experimental results and evaluation are provided in section 4; and finally, we draw our conclusions and plans for future work in section 5. |