مشخصات مقاله | |
ترجمه عنوان مقاله | مقایسه بین الگوریتم Kantorovich نمونه برای پردازش تصویر دیجیتال با برخی روشهای درون یابی و شبه درون یابی |
عنوان انگلیسی مقاله | A comparison between the sampling Kantorovich algorithm for digital image processing with some interpolation and quasi-interpolation methods |
انتشار | مقاله سال ۲۰۲۰ |
تعداد صفحات مقاله انگلیسی | ۱۸ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۳٫۳۵۰ در سال ۲۰۱۹ |
شاخص H_index | ۱۲۵ در سال ۲۰۲۰ |
شاخص SJR | ۰٫۹۲۷ در سال ۲۰۱۹ |
شناسه ISSN | ۰۰۹۶-۳۰۰۳ |
شاخص Quartile (چارک) | Q1 در سال ۲۰۱۹ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم و محاسبات |
نوع ارائه مقاله |
ژورنال |
مجله | ریاضی کاربردی و محاسبات – Applied Mathematics and Computation |
دانشگاه | Department of Mathematics and Computer Science, University of Perugia, 1, Via Vanvitelli, Perugia 06123, Italy |
کلمات کلیدی | Kantorovich نمونه، درون یابی، شبه درون یابی، پردازش تصویر، نسبت سیگنال اوج به نویز (PSNR)، زمان CPU |
کلمات کلیدی انگلیسی | Sampling Kantorovich، Interpolation، Quasi-interpolation، Image processing، PSNR، CPU time |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.amc.2020.125046 |
کد محصول | E14497 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract MSC ۱٫ Introduction ۲٫ The sampling Kantorovich algorithm for digital image processing ۳٫ The peak signal-to-noise ratio (PSNR) ۴٫ Some interpolation and quasi-interpolation methods for digital image processing ۵٫ Numerical examples ۶٫ Final remarks and conclusions Acknowledgments References |
بخشی از متن مقاله: |
Abstract
In this paper we study the performance of the sampling Kantorovich (S–K) algorithm for image processing with other well-known interpolation and quasi-interpolation methods. The S-K algorithm has been implemented with three different families of kernels: central B-splines, Jackson type and Bochner–Riesz. The above method is compared, in term of PSNR (Peak Signal-to-Noise Ratio) and CPU time, with the bilinear and bicubic interpolation, the quasi FIR (Finite Impulse Response) and quasi IIR (Infinite Impulse Response) approximation. Experimental results show better performance of S-K algorithm than the considered other ones. Introduction The rescaling of an image is a widely studied problem in Digital Image Processing (D.I.P.). Typical methods developed to perform the above task are based on mathematical interpolation, see, e.g., [10,36]. For instance, bilinear and bicubic interpolation are among the most used interpolation methods for image rescaling, see e.g., [9,32]. The above methods are quite easy to implement and need of a small CPU time. On the other side, they provide not optimal results in terms of quality of the reconstruction, measured by the so-called PSNR (Peak Signal to Noise Ratio). To overcome this limit, recently quasi-interpolation methods have been successfully used. From the theoretical point of view, the better performance of the latter approximation methods than the interpolation ones, has been proved providing estimates concerning the order of approximation, see e.g., [7]. For instance, quasi Finite Impulse Response (quasi FIR) and Infinite Impulse Response (quasi IIR) have been reviewed to face the rescaling problem. Numerical results confirm the theoretical ones, e.g., in case of non trivial multiple image rotation (see [13] again). Concerning the quasi-interpolation methods for D.I.P., the so-called sampling Kantorovich (S-K) algorithm has been recently introduced (see [19]). The S–K algorithm is based on the theory of the sampling Kantorovich series Sw, w > 0, which are approximation operators particularly suitable for digital image reconstruction, in view of their mathematical expression, see e.g., [17,19]. |