مشخصات مقاله | |
ترجمه عنوان مقاله | چارچوب ارزیابی چرخه عمر سیستم محصولات دامی برای محاسبه کیفیت غذایی محصولات نهایی |
عنوان انگلیسی مقاله | Framework for life cycle assessment of livestock production systems to account for the nutritional quality of final products |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 13 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه وایلی |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR – DOAJ |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.032 در سال 2017 |
شاخص H_index | 13 در سال 2018 |
شاخص SJR | 0.768 در سال 2018 |
رشته های مرتبط | صنایع غذایی |
گرایش های مرتبط | کنترل کیفی و بهداشت |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | غذا و امنیت انرژی – Food And Energy Security |
دانشگاه | Rothamsted Research – Okehampton – Devon – UK |
کلمات کلیدی | اثرات زیست محیطی، مدیریت مزرعه، تغذیه انسانی، شاخص مواد مغذی، امگا 3، کشاورزی پایدار |
کلمات کلیدی انگلیسی | environmental footprints, farm management, human nutrition, nutrient index, omega-3, sustainable agriculture |
شناسه دیجیتال – doi |
https://doi.org/10.1002/fes3.143 |
کد محصول | E10305 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract INTRODUCTION EFFECTS OF FARMING SYSTEMS ON MEAT QUALITY MATERIALS AND METHODS RESULTS DISCUSSION REFERENCES |
بخشی از متن مقاله: |
Abstract
Life cycle assessment (LCA) is widely regarded as a useful tool for comparing the environmental impacts of multiple livestock production systems. While LCA results are typically communicated in the form of environmental burdens per mass unit of the end product, it is increasingly becoming recognized that the product quality also needs to be accounted for to truly understand the value of a farming system to society. To date, a number of studies have examined environmental consequences of different food consumption patterns at the diet level; however, few have addressed nutritional variations of a single commodity attributable to production systems, leaving limited insight into how on-farm practices can be improved to better balance environment and human nutrition. Using data from seven livestock production systems encompassing cattle, sheep, pigs, and poultry, this paper proposes a novel framework to incorporate nutritional value of meat products into livestock LCA. The results of quantitative case studies demonstrate that relative emissions intensities associated with different systems can be dramatically altered when the nutrient content of meat replaces the mass of meat as the functional unit, with cattle systems outperforming pig and poultry systems in some cases. This finding suggests that the performance of livestock systems should be evaluated under a whole supply chain approach, whereby end products originating from different farm management strategies are treated as competing but separate commodities. INTRODUCTION With increasing concern regarding environmental consequences of agricultural production worldwide, the importance of farming system evaluation has never been greater (Eisler et al., 2014; Gerber et al., 2013; Horton, Koh, & Guang, 2016). Among the plethora of evaluation methods, life cycle assessment (LCA) across agri-food supply chains is considered to be one of the most informative tools to quantitatively compare environmental performances of multiple farming strategies at the systems level (de Vries & de Boer, 2010). Studies employing agri-food LCA typically estimate pollution–production ratios as their primary outputs, for example kg CO2-eq per unit of food produced, whereby systems represented by lower scores are judged to be socially more desirable. In the context of livestock production systems, the denominator depicting the quantity of production, or the functional unit, generally takes the form of output mass, such as 1 kg of liveweight, cold carcass weight, or deboned meat (McAuliffe, Chapman, & Sage, 2016; McAuliffe, Takahashi, Mogensen et al., 2017; de Vries, van Middelaar, & de Boer, 2015). While this mass-based approach provides a useful means of intercomparisons between different farming systems (McAuliffe, Takahashi, Orr, Harris, & Lee, 2018), the resultant indicators are not a holistic representation of the real function of the final product, in this case meat as a source of human nutrition. Recent research has begun to address this issue in the context of dietary comparisons, primarily focusing on the consumption side of agrifood systems (Hallström, Carlsson-Kanyama, & Börjesson, 2015; Sonesson, Davis, Flysjö, Gustavsson, & Witthöft, 2017); Coelho, Pernollet, and van der Werf (2016), for example, examined the environmental impacts of hypothetical human diets with elevated omega-3 polyunsaturated fatty acid (PUFA) intake, which is technologically possible by adjusting livestock feeds to promote a higher omega-3 content in animal tissues. Societywide dietary shifts, however, require drastic changes in supply chain structure as well as consumers’ opinions, and therefore can only be achieved over a long period of time (Smil, 2000). In addition, as any human diet is composed of a large number of food groups originating from multiple farms, implications of these studies on agricultural systems producing each commodity are not immediately clear. |