مقاله انگلیسی رایگان در مورد تخلیه هوشمند در رایانش مرزی با دسترسی چندگانه – 2019 IEEE

 

مشخصات مقاله
ترجمه عنوان مقاله تخلیه هوشمند در رایانش مرزی با دسترسی چندگانه: یک بررسی و چارچوب مطابق با آخرین پیشرفتهای علمی
عنوان انگلیسی مقاله Intelligent Offloading in Multi-Access Edge Computing: A State-of-the-Art Review and Framework
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 7 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) JCR – Master Journal List – Master ISC – Scopus
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
12.727 در سال 2018
شاخص H_index 213 در سال 2019
شاخص SJR 2.373 در سال 2018
شناسه ISSN 0163-6804
شاخص Quartile (چارک) Q1 در سال 2018
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط کامپیوتر
گرایش های مرتبط محاسبات ابری، هوش مصنوعی، معماری سیستم های کامپیوتری
نوع ارائه مقاله
ژورنال
مجله  مجله ارتباطات – Communications Magazine
دانشگاه Sch. of Commun. & Inf. Eng., Chongqing Univ. of Post & Telecommun., Chongqing, China
شناسه دیجیتال – doi
https://doi.org/10.1109/MCOM.2019.1800608
کد محصول E13102
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

1- Introduction

2- Intelligent Approaches for Offloading in MEC

3- Advantage, Limitation, and Application

4- AI in MEC System Design: Framework and Challenges

5- Conclusions

References

 

بخشی از متن مقاله:

Abstract

Multi-access edge computing (MEC), which is deployed in the proximity area of the mobile user side as a supplement to the traditional remote cloud center, has been regarded as a promising technique for 5G heterogeneous networks. With the assistance of MEC, mobile users can access computing resource effectively. Also, congestion in the core network can be alleviated by offloading. To adapt in stochastic and constantly varying environments, augmented intelligence (AI) is introduced in MEC for intelligent decision making. For this reason, several recent works have focused on intelligent offloading in MEC to harvest its potential benefits. Therefore, machine learning (ML)-based approaches, including reinforcement learning, supervised/unsupervised learning, deep learning, as well as deep reinforcement learning for AI in MEC have become hot topics. However, many technical challenges still remain to be addressed for AI in MEC. In this article, the basic concept of MEC and main applications are introduced, and existing fundamental works using various ML-based approaches are reviewed. Furthermore, some potential issues of AI in MEC for future work are discussed.

Introduction

Toward the fifth generation (5G) [1] mobile communications network, ubiquitous and intelligent cloud computing is one of the key technologies. However, the powerful cloud center is usually deployed far away from mobile users, and thus huge amounts of traffic are usually transmitted through multiple intermediate nodes. As a result, heavy load, congestion, delay, energy consumption, and so on could be incurred, and these would weaken the advantages of cloud computing. Therefore, multi-access edge computing (MEC) [2], which moves computing resource from the core network to the edge, is proposed as a natural design. Figure 1 illustrates the typical architecture and main applications of MEC in heterogeneous networks (HetNets) [3]. Different from the remote cloud center, MEC is a distributed network architecture at the edge network.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا