مشخصات مقاله | |
ترجمه عنوان مقاله | تخلیه هوشمند در رایانش مرزی با دسترسی چندگانه: یک بررسی و چارچوب مطابق با آخرین پیشرفتهای علمی |
عنوان انگلیسی مقاله | Intelligent Offloading in Multi-Access Edge Computing: A State-of-the-Art Review and Framework |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 7 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | JCR – Master Journal List – Master ISC – Scopus |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
12.727 در سال 2018 |
شاخص H_index | 213 در سال 2019 |
شاخص SJR | 2.373 در سال 2018 |
شناسه ISSN | 0163-6804 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | محاسبات ابری، هوش مصنوعی، معماری سیستم های کامپیوتری |
نوع ارائه مقاله |
ژورنال |
مجله | مجله ارتباطات – Communications Magazine |
دانشگاه | Sch. of Commun. & Inf. Eng., Chongqing Univ. of Post & Telecommun., Chongqing, China |
شناسه دیجیتال – doi |
https://doi.org/10.1109/MCOM.2019.1800608 |
کد محصول | E13102 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Intelligent Approaches for Offloading in MEC 3- Advantage, Limitation, and Application 4- AI in MEC System Design: Framework and Challenges 5- Conclusions References |
بخشی از متن مقاله: |
Abstract Multi-access edge computing (MEC), which is deployed in the proximity area of the mobile user side as a supplement to the traditional remote cloud center, has been regarded as a promising technique for 5G heterogeneous networks. With the assistance of MEC, mobile users can access computing resource effectively. Also, congestion in the core network can be alleviated by offloading. To adapt in stochastic and constantly varying environments, augmented intelligence (AI) is introduced in MEC for intelligent decision making. For this reason, several recent works have focused on intelligent offloading in MEC to harvest its potential benefits. Therefore, machine learning (ML)-based approaches, including reinforcement learning, supervised/unsupervised learning, deep learning, as well as deep reinforcement learning for AI in MEC have become hot topics. However, many technical challenges still remain to be addressed for AI in MEC. In this article, the basic concept of MEC and main applications are introduced, and existing fundamental works using various ML-based approaches are reviewed. Furthermore, some potential issues of AI in MEC for future work are discussed. Introduction Toward the fifth generation (5G) [1] mobile communications network, ubiquitous and intelligent cloud computing is one of the key technologies. However, the powerful cloud center is usually deployed far away from mobile users, and thus huge amounts of traffic are usually transmitted through multiple intermediate nodes. As a result, heavy load, congestion, delay, energy consumption, and so on could be incurred, and these would weaken the advantages of cloud computing. Therefore, multi-access edge computing (MEC) [2], which moves computing resource from the core network to the edge, is proposed as a natural design. Figure 1 illustrates the typical architecture and main applications of MEC in heterogeneous networks (HetNets) [3]. Different from the remote cloud center, MEC is a distributed network architecture at the edge network. |