مقاله انگلیسی رایگان در مورد انرژی گرمایی به عنوان یک شاخص خسارت – الزویر 2018

 

مشخصات مقاله
ترجمه عنوان مقاله انرژی گرمایی پراکنده به عنوان یک شاخص خسارت فرسودگی برای برآورد تجربی طول عمر فرسودگی
عنوان انگلیسی مقاله The Dissipated Heat Energy as a Fatigue Damage Index For Experimental Fatigue Life Estimations
انتشار مقاله سال 2018
تعداد صفحات مقاله انگلیسی 10 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
0.970 در سال 2018
شاخص H_index 51 در سال 2019
شاخص SJR 0.277 در سال 2018
شناسه ISSN 1877-7058
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی مکانیک
گرایش های مرتبط تاسیسات حرارتی و برودتی، ساخت و تولید
نوع ارائه مقاله
ژورنال و کنفرانس
مجله / کنفرانس پروسیدیای مهندسی – Procedia Engineering
دانشگاه  University of Padova, Department of Industrial Engineering, via Venezia, 1, 35131 Padova, Italy
شناسه دیجیتال – doi
https://doi.org/10.1016/j.proeng.2018.02.032
کد محصول  E12474
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

1. Introduction

2. Theoretical background at constant amplitude, zero-mean stress loading

3. Analysis of geometrical effects in constant amplitude, fully reversed fatigue loading

4. Analysis of the mean stress influence in constant amplitude fatigue

5. Analysis of two stress-level loading

6. Conclusions

Acknowledgements

References

 

بخشی از متن مقاله:
Abstract

In the last decade, the heat energy dissipated in a unit volume of material per cycle (the Q parameter) has been adopted by the authors as a fatigue damage indicator of metallic materials. The advantage of using such a parameter is that it can be readily and in-situ measured at a point or a component undergoing fatigue solicitations. Geometrical, mean stress and variable amplitude (limited to two stress-level tests) effects have been successfully analysed by using the Q parameter. Concerning geometrical effects, approximately 160 experimental results generated from constant amplitude, completely reversed, stress- or strain-controlled fatigue tests on plain or notched hot rolled as well as cold drawn stainless steel specimens have been rationalised. Afterwards, the heat-energy based approach was extended to include the mean stress effect, by using a thermodynamic fatigue damage variable that combines two parameters, i.e. Q and the thermoelastic temperature achieved by the material at the maximum stress of the load cycle. Finally, Q was used to rationalise two stress-level fatigue test results, by using the Q-based fatigue curve combined with Miner’s rule. In this paper, the theoretical background and the application of the energy-based approach are reviewed in order to analyse all previously mentioned effects, focusing mainly on the mean stress and the variable amplitude, two stress-level effects.

Introduction

Fatigue of metallic materials is an irreversible process, accompanied by microstructural changes, localised plastic strains and energy dissipation, which requires a certain amount of mechanical energy in a unit volume of material, W. Only part of this energy is accumulated in the form of internal energy, Ep, which is responsible for fatigue damage accumulation and final fracture. The remaining part is dissipated as heat [1], thus translating into some temperature increase during fatigue testing. The thermal energy dissipated in a unit volume of material per cycle (the Q parameter) has been adopted as a fatigue damage indicator during fatigue tests of stainless steel specimens and a relatively simple experimental technique has also been proposed to estimate Q from in-situ measurements of the temperature at the surface of a specimen or a component [2]. Similar to W, Q is thought of as a material property, i.e. it is independent, within certain limits, of the thermal, mechanical and geometrical boundary conditions of the laboratory fatigue tests [3]. Then, the specific heat loss per cycle Q at a given point of a component (similar to the plastic hysteresis energy) depends only on the applied load cycle, defined by amplitude, mean value and stress state. The Q parameter was initially adopted to rationalise geometrical effects in fatigue of metallic [3-7] as well as composite materials [8]. Afterwards, the heat-energy based approach was extended to include the mean stress effect [9], as well as to rationalise two stress level fatigue test results of steel materials [10].

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا