مقاله انگلیسی رایگان در مورد هوش مصنوعی در قلب و عروق – الزویر 2018

 

مشخصات مقاله
ترجمه عنوان مقاله هوش مصنوعی در قلب و عروق
عنوان انگلیسی مقاله Artificial Intelligence in Cardiology
انتشار مقاله سال 2018
تعداد صفحات مقاله انگلیسی 12 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله مروری (review article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR – MedLine
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
16.834 در سال 2017
شاخص H_index 383 در سال 2018
شاخص SJR 11.061 در سال 2018
رشته های مرتبط مهندسی کامپیوتر، پزشکی
گرایش های مرتبط هوش مصنوعی، قلب و عروق
نوع ارائه مقاله
ژورنال
مجله / کنفرانس مجله کالج قلب و عروق آمریكا – Journal of the American College of Cardiology
دانشگاه Institute for Next Generation Healthcare – Mount Sinai Health System – New York
شناسه دیجیتال – doi
https://doi.org/10.1016/j.jacc.2018.03.521
کد محصول E10199
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
Central Illustration
Key Words
Abbreviations and Acronyms
How Do Artificial Intelligence and Machine Learning Relate to Statistics?
Why Does Cardiology Need Artificial Intelligence?
Supervised Learning: Classification and Prediction
Feature Selection
Problems in Biomedical Machine Learning
Dichotomania
A Brief Survey of Supervised Machine Learning Algorithms in Cardiology
Unsupervised Learning, Neural Networks, and Deep Learning
Reinforcement Learning
What Will Cardiovascular Medicine Gain From Machine Learning and Artificial Intelligence?
References

بخشی از متن مقاله:
ABSTRACT

Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine, and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes.

The promise of artificial intelligence (AI) and machine learning in cardiology is to provide a set of tools to augment and extend the effectiveness of the cardiologist. This is required for several reasons. The clinical introduction of datarich technologies such as whole-genome-sequencing and streaming mobile device biometrics will soon require cardiologists to interpret and operationalize information from many disparate fields of biomedicine (1–4). Simultaneously, mounting external pressures in medicine are requiring greater operational efficiency from physicians and health care systems (5). Finally, patients are beginning to demand faster and more personalized care (6,7). In short, physicians are being inundated with data requiring more sophisticated interpretation while being expected to perform more efficiently. The solution is machine learning, which can enhance every stage of patient care—from research and discovery to diagnosis to selection of therapy. As a result, clinical practice will become more efficient, more convenient, more personalized, and more effective. Furthermore, the future’s data will not be collected solely within the health care setting. The proliferation of mobile sensors will allow physicians of the future to monitor, interpret, and respond to additional streams of biomedical data collected remotely and automatically. In this technology corner, we introduce common methods for machine learning, review several selected applications in cardiology, and forecast how cardiovascular medicine will incorporate AI in the future (Central Illustration).

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا