مشخصات مقاله | |
ترجمه عنوان مقاله | هوش مصنوعی در قلب و عروق |
عنوان انگلیسی مقاله | Artificial Intelligence in Cardiology |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 12 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله مروری (review article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR – MedLine |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
16.834 در سال 2017 |
شاخص H_index | 383 در سال 2018 |
شاخص SJR | 11.061 در سال 2018 |
رشته های مرتبط | مهندسی کامپیوتر، پزشکی |
گرایش های مرتبط | هوش مصنوعی، قلب و عروق |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | مجله کالج قلب و عروق آمریكا – Journal of the American College of Cardiology |
دانشگاه | Institute for Next Generation Healthcare – Mount Sinai Health System – New York |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jacc.2018.03.521 |
کد محصول | E10199 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Central Illustration Key Words Abbreviations and Acronyms How Do Artificial Intelligence and Machine Learning Relate to Statistics? Why Does Cardiology Need Artificial Intelligence? Supervised Learning: Classification and Prediction Feature Selection Problems in Biomedical Machine Learning Dichotomania A Brief Survey of Supervised Machine Learning Algorithms in Cardiology Unsupervised Learning, Neural Networks, and Deep Learning Reinforcement Learning What Will Cardiovascular Medicine Gain From Machine Learning and Artificial Intelligence? References |
بخشی از متن مقاله: |
ABSTRACT
Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine, and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes. The promise of artificial intelligence (AI) and machine learning in cardiology is to provide a set of tools to augment and extend the effectiveness of the cardiologist. This is required for several reasons. The clinical introduction of datarich technologies such as whole-genome-sequencing and streaming mobile device biometrics will soon require cardiologists to interpret and operationalize information from many disparate fields of biomedicine (1–4). Simultaneously, mounting external pressures in medicine are requiring greater operational efficiency from physicians and health care systems (5). Finally, patients are beginning to demand faster and more personalized care (6,7). In short, physicians are being inundated with data requiring more sophisticated interpretation while being expected to perform more efficiently. The solution is machine learning, which can enhance every stage of patient care—from research and discovery to diagnosis to selection of therapy. As a result, clinical practice will become more efficient, more convenient, more personalized, and more effective. Furthermore, the future’s data will not be collected solely within the health care setting. The proliferation of mobile sensors will allow physicians of the future to monitor, interpret, and respond to additional streams of biomedical data collected remotely and automatically. In this technology corner, we introduce common methods for machine learning, review several selected applications in cardiology, and forecast how cardiovascular medicine will incorporate AI in the future (Central Illustration). |