مشخصات مقاله | |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 21 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه الزویر |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Artificial neural networks used in optimization problems |
ترجمه عنوان مقاله | شبکه های عصبی مصنوعی کاربردی در بهینه سازی |
فرمت مقاله انگلیسی | |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | هوش مصنوعی |
مجله | محاسبات عصبی – Neuro computing |
دانشگاه | University of Salamanca – BISITE Research Group – Salamanca – Spain |
کلمات کلیدی | شبکه های عصبی، مسائل بهینه سازی، بهینه سازی غیر خطی |
کد محصول | E5851 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
Introduction
Optimization problems are an important part of soft computing, and have been applied to different fields such as smart grids [1], logistics [2] [3] resources [4] or sensor networks [5]. Such problems are characterized by the presence of one or more objective maximizing or minimizing functions [5] and various restrictions that must be met so that the solution is valid. The problems are easy to resolve when we are working with linear restrictions and objective functions because there are methods to obtain the optimal solution However, in the case of non linear restrictions or objective functions it may be necessary to use heuristics [2] [5] to obtain a pseudo optimal solution. The management of heuristic solutions is continually evolving, which is precisely why we are looking for alternatives to problems in which it is not feasible to find an optimal solution. hen working with linear restrictions and objective functions, optimization problems can be resolved with algorithms such as the Simplex [6] which limits the study of this type of problem. Certain non linear problems can be optimally resolved by using algorithms such as Lagrange multipliers or Kuhn–Tucker conditions [7]. In many cases, it is no possible to resolve a problem with Lagrange multipliers because the generated system of equations cannot be resolved without resorting to numerical methods, which would prevent a direct approach to resolving the problem. n other cases the Kuhn Tucker condition are not met There is a broad range of opportunities to study optimization problems that cannot be solved with an exact algorithm. These problems are usually solved by applying a heuristics and metaheuristics solution such as genetic algorithms [8], particle swarm optimization [9], Simulated annealing [10], ant colony optimization [12] etc. |