مشخصات مقاله | |
ترجمه عنوان مقاله | تحلیل کلان داده ها و پیش بینی درخواست در زنجیره های تامین: تجزیه و تحلیل مفهومی |
عنوان انگلیسی مقاله | Big data analytics and demand forecasting in supply chains: a conceptual analysis |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 38 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه امرالد |
نوع نگارش مقاله |
مقاله مفهومی – Conceptual paper |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.776 در سال 2017 |
شاخص H_index | 60 در سال 2018 |
شاخص SJR | 0.71 در سال 2018 |
رشته های مرتبط | مهندسی صنایع، فناوری اطلاعات |
گرایش های مرتبط | لجستیک و زنجیره تامین، مدیریت سیستم های اطلاعات |
نوع ارائه مقاله |
ژورنال |
مجله | مجله بین المللی مدیریت لجستیک – International Journal of Logistics Management |
دانشگاه | Institute of Supply Chain Management – University of St Gallen – St Gallen – Switzerland |
کلمات کلیدی | کلان داده؛ تحلیل؛ روش پیش بینی؛ فاکتور موثر بر تقاضا؛ زنجیره تامین خرده فروشی |
کلمات کلیدی انگلیسی | Big data،Analytics،Forecasting methods،Demand influencing factor،Retail supply chains |
شناسه دیجیتال – doi |
https://doi.org/10.1108/IJLM-04-2017-0088 |
کد محصول | E10504 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Background – the conceptual elements 3- Interplay – the theoretical framing 4- Application – the exemplification by retail supply chains 5- Conclusion References |
بخشی از متن مقاله: |
Abstract Purpose – Demand forecasting is a challenging task that could benefit from additional relevant data and processes. This paper examines how big data analytics enhances forecasts’ accuracy. Design/methodology/approach – A conceptual structure based on the design-science paradigm is applied to create categories for big data analytics. Existing theories from the scientific literature are synthesized with industry knowledge through experience and intuition. Accordingly, a reference frame is developed using three steps: (i) description of conceptual elements of the frame utilizing justificatory knowledge, (ii) specification of principles of the theoretical frame to explain the interplay between elements, and (iii) creation of a matching frame by conducting investigations within the retail industry. Findings – The developed framework could serve as a first guide for meaningful big data analytics initiatives in the supply chain. The paper illustrates that integration of different data sources in demand forecasting is feasible but requires data scientists to perform the job, an appropriate technological foundation, and technology investments. Originality/value – So far, no scientific work has analyzed the relation of forecasting methods to big data analytics; previous works have described technologies, types of analytics, and forecasting methods separately. This paper, in contrast, combines insights and provides advice on how enterprises can employ big data analytics in their operational, tactical, or strategic demand plans. Introduction Retailers know a lot about end consumers, perhaps more than we know ourselves. In 2012, for example, US retailer Target sent coupons for baby clothes to a high-school girl. Her father was not amused by this type of advertisement, decided to visit a local Target store and requested to see the person in charge. The manager apologized for the inappropriate advertisement then a few days later over the phone. However, the father, seemingly embarrassed, revealed during this phone conversation that he had talked to his daughter: “It turns out there’s been some activities in my house I haven’t been completely aware of. She’s due in August” (Duhigg, 2012). As market expectations, competition, and volatility are rising, retailers are exploring data analytics to address new challenges and opportunities. Data analytics techniques not only provide single companies with greater accuracy, clarity, and insight but also lead to more contextual “intelligence” shared across all supply chains regardless of industry or sector. |