مشخصات مقاله | |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 9 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه الزویر |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Bootstrapping for multivariate linear regression models |
ترجمه عنوان مقاله | خودگردان سازی برای مدل های رگرسیون خطی چند متغیره |
فرمت مقاله انگلیسی | |
رشته های مرتبط | آمار |
گرایش های مرتبط | آمار ریاضی |
مجله | نامه های آمار و احتمال – Statistics and Probability Letters |
دانشگاه | Department of Biostatistics – Yale School of Public Health – USA |
کلمات کلیدی | بوت استرپ چند متغیره، مدل رگرسیون خطی چند متغیره، بوت استرپ باقی مانده |
کلمات کلیدی انگلیسی | Multivariate bootstrap, Multivariate linear regression model, Residual bootstrap |
شناسه دیجیتال – doi | https://doi.org/10.1016/j.spl.2017.11.001 |
کد محصول | E8085 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
1. Introduction
The linear regression model is an important and useful tool in many statistical analyses for studying the relationship among variables. Regression analysis is primarily used for predicting values of the response variable at interesting values of the predictor variables, discovering the predictors that are associated with the response variable, and estimating how changes in the predictor variables affects the response variable (Weisberg, 2005). The standard linear regression methodology assumes that the response variable is a scalar. However, it may be the case that one is interested in investigating multiple response variables simultaneously. One could perform a regression analysis on each response separately in this setting. Such an analysis would fail to detect associations between responses. Regression settings where associations of multiple responses are of interest require a multivariate linear regression model for analysis. Bootstrapping techniques are well understood for the linear regression model with a univariate response (Bickel and Freedman, 1981; Freedman, 1981). In particular, theoretical justification for the residual bootstrap as a way to estimate the variability of the ordinary least squares (OLS) estimator of the regression coefficient vector in this model has been developed (Freedman, 1981). Theoretical extensions of residual bootstrap techniques appropriate for the multivariate linear regression model have not been formally introduced. The existence of such an extension is stated without proof and rather implicitly in subsequent works (Freedman and Peters, 1984; Diaconis and Efron, 1983). In this article we show that the bootstrap procedures in Freedman (1981) provide consistent estimates of the variability of the OLS estimator of the regression coefficient matrix in the multivariate linear regression model. Our proof technique follows similar logic as Freedman (1981). The generality of the bootstrap theory developed in Bickel and Freedman (1981) provide the tools required for our extension to the multivariate linear regression model. |