دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقالات بیس اقتصاددانلود رایگان مقالات بیس مدیریتدانلود رایگان مقالات بیس مدیریت مالیدانلود رایگان مقالات بیس مهندسی فناوری اطلاعات ITدانلود رایگان مقالات پژوهشی اقتصاددانلود رایگان مقالات پژوهشی مدیریتدانلود رایگان مقالات پژوهشی مهندسی فناوری اطلاعات ITدانلود رایگان مقالات ژورنالی اقتصاددانلود رایگان مقالات ژورنالی مدیریتدانلود رایگان مقالات ژورنالی مهندسی فناوری اطلاعات ITدانلود رایگان مقالات سال 2018دانلود رایگان مقاله ISI اقتصاد به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI اقتصاد مالی به زبان انگلیسیدانلود رایگان مقاله ISI شبکه های عصبی به زبان انگلیسیدانلود رایگان مقاله ISI شبکه های کامپیوتری به زبان انگلیسیدانلود رایگان مقاله ISI مدیریت به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مدیریت مالی به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی فناوری اطلاعات به زبان انگلیسی سال 2022 و 2023سال انتشار

مقاله انگلیسی رایگان در مورد درک شبکه های عصبی عمیق از سرمایه گذاران – الزویر ۲۰۱۸

 

مشخصات مقاله
انتشار مقاله سال ۲۰۱۸
تعداد صفحات مقاله انگلیسی ۵۸ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه الزویر
نوع نگارش مقاله مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس میباشد
نوع مقاله ISI
عنوان انگلیسی مقاله Deep neural networks understand investors better
ترجمه عنوان مقاله درک شبکه های عصبی عمیق از سرمایه گذاران
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مدیریت، علوم اقتصادی، فناوری اطلاعات
گرایش های مرتبط مدیریت مالی، اقتصاد مالی، شبکه های کامپیوتری
مجله سیستم های پشتیبانی تصمیم – Decision Support Systems
دانشگاه Department of Finance – Newcastle Business School – The University of Newcastle
کلمات کلیدی تمایل سرمایه گذار، دامنه اختصاصی، Emojis، شبکه عصبی عمیق (DNN)، قراردادن کلمه، StockTwits
کلمات کلیدی انگلیسی Investor Sentiment, Domain-specific, Emojis, Deep Neural Network (DNN), Word Embeddings, StockTwits
شناسه دیجیتال – doi
https://doi.org/10.1016/j.dss.2018.06.002
کد محصول E8771
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:
۱٫ Introduction

Although the neoclassical finance paradigm of efficient markets provides the proposition that stock returns are unpredictable (Fama, 1970), a large body of contradictory empirical evidence has brought this theory into question (Baker and Wurgler, 2000; Cochrane, 2000). In light of this evidence, behavioral finance has been proposed as an alternative theoretical paradigm to explain stock returns. The key implication of behavioral finance is that the emotions and moods of investors play an important role in financial decisions (Nofsinger, 2005). Moreover, the presence of irrationality and the emotive basis of decisions made by noise-traders, who comprise a relatively large proportion of stock market participants (Black, 1986), has resulted in investor sentiment being considered to influence investor decisionmaking, and hence stock returns. This new paradigm of stock market behavior has resulted in the need to develop an accurate measure of investor sentiment (Chan and Chong, 2017). Despite a large number of studies proposing a relationship between investor sentiment extracted from social media and stock market returns, there is no consensus in empirical studies whether this theoretical relationship is supported in the data. Proponents of behavioral finance argue that this lack of empirical evidence can be attributed mainly to problems with the measurement of investor sentiment through social networks in existing studies of financial markets. These problems include: the absence of an accurate approach for measuring investor sentiment (Renault, 2017; Oh and Sheng, 2011); use of datasets from platforms that do not accurately represent investors (Bollen et al., 2011; Ranco et al., 2015); and the use of short sample periods (Bollen et al., 2011; Li et al., 2018). Motivated by these problems, this study applies recent advances in the domain-general sentiment analysis literature to data from a finance-related social media platform to construct a more accurate decision support system in the context of investor sentiment classification. The collection of investor sentiment data from Internet-based microblogs overcomes issues that have been identified from the use of questionnaires, such as errors due to impaired questionnaire design (Brace, 2008) and inaccurate or untruthful participant responses (Singer, 2002).

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا