مقاله انگلیسی رایگان در مورد سیستم پشتیبانی از تصمیم گیری مبتنی بر شبکه های عصبی ( الزویر )
مشخصات مقاله | |
عنوان مقاله | Development of a decision support system based on neural networks and a genetic algorithm |
ترجمه عنوان مقاله | توسعه سیستم پشتیبانی از تصمیم گیری بر اساس شبکه های عصبی و یک الگوریتم ژنتیک |
فرمت مقاله | |
نوع مقاله | ISI |
سال انتشار | مقاله سال ۲۰۱۵ |
تعداد صفحات مقاله | ۷ صفحه |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | نرم افزار، مهندسی الگوریتم ها و محاسبات و هوش مصنوعی |
مجله | سیستم های خبره با کاربردهای آن – Expert Systems with Applications |
دانشگاه | موسسه الکترونیک و ریاضی مسکو، دانشکده اقتصاد، دانشگاه ملی روسیه |
کلمات کلیدی | سیستم پشتیبانی تصمیم، DSS، شبکه عصبی، الگوریتم ژنتیک، GPGPU ،CUDA |
کد محصول | ۲۳۸ |
نشریه | نشریه الزویر |
لینک مقاله در سایت مرجع | لینک این مقاله در سایت الزویر (ساینس دایرکت) Sciencedirect – Elsevier |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
خرید ترجمه این مقاله | خرید ترجمه این مقاله |
بخشی از متن مقاله: |
چکیده
با توجه به افزایش روزافزون حجم اطلاعات و پیچیدگی مهندسی، سیستم های اجتماعی و اقتصادی، ارزیابی داده های ورودی و مدیریت این سیستم ها به صورت صحیح دشوار شده است. سیستم های پشتیبانی تصمیم گیری جاری (DSS) تلاش دارند تا به نتایج بهینه دست پیدا کنند و در عین حال ریسک های تلفات جدی را به حداقل برسانند. هدف این DSS کمک به تصمیم گیرنده است که با مسئله حجم بسیار زیاد از داده ها و واکنش های مبهم سیستم های پیچیده بسته به عوامل خارجی مواجه است. با استفاده از تحلیل دقیق و عمیق، DSSها انتظار می رود که برای کاربران نشانگرهای پیش بینی شده دقیق و تصمیم های بیهنه را فراهم کنند. در این مقاله ما یک ساختار جدید DSS را پیشنهاد می کنیم که می تواند در دامنه گسترده از کارهای دشوار تا رسمی استفاده و به سرعت بالای محابسه و تصمیم گیری دست پیدا کند. ما رویکردهای مختلف به تعیین وابستگی یک متغیر هدف به داده های ورودی را ارزیابی کرده و رایج ترین روش های پیش بینی آماری را بازبینی می کنیم. مزایای استفاده از شبکه های عصبی برای این هدف توصیف شده اند. ما استفاده از شبکه های عصبی میانی را برای محاسبات با داده های میانی پیشنهاد می کنیم که به کاربر این امکان را می دهد تا DSS ما را در یک دامنه گسترده از کارهای پیچیده استفاده کند. ما یک الگوریتم یادگیری متناظر را برای شبکه های عصبی میانی نیز ایجاد کردیم. مزایای استفاده از یک الگوریتم ژنتیک (GA) برای انتخاب معنی دارترین ورودی ها نشان داده شده اند. ما استفاده از محاسبه با هدف کلی بر روی واحدهای پردازش گرافیک (GPGPU) را برای رسیدن به محاسبات سرعت بالا با سیستم پشتیبانی سرعت بالا در پرسش توجیه می کنیم. یک نمودار کارکردی از سیستم نیز ارائه و توصیف شده است. نتایج و نمونه های استفاده از DSS نشان داده شده اند. ۱٫ مقدمه |