دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقالات پژوهشی مهندسی فناوری اطلاعات ITدانلود رایگان مقالات ژورنالی مهندسی فناوری اطلاعات ITدانلود رایگان مقالات سال 2018دانلود رایگان مقاله ISI پروتئین ها به زبان انگلیسیدانلود رایگان مقاله ISI شبکه های عصبی مصنوعی ANN به زبان انگلیسیدانلود رایگان مقاله ISI شبکه های کامپیوتری به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی فناوری اطلاعات به زبان انگلیسی سال 2022 و 2023سال انتشار

مقاله انگلیسی رایگان در مورد شبکه عصبی مصنوعی پیشرفته برای شناخت رشته پروتئین – الزویر ۲۰۱۸

 

مشخصات مقاله
ترجمه عنوان مقاله شبکه عصبی مصنوعی پیشرفته برای شناخت رشته پروتئین و پیش بینی کلاس ساختاری
عنوان انگلیسی مقاله Enhanced Artificial Neural Network for Protein Fold Recognition and Structural Class Prediction
انتشار مقاله سال ۲۰۱۸
تعداد صفحات مقاله انگلیسی ۱۵ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مهندسی فناوری اطلاعات
گرایش های مرتبط شبکه های کامپیوتری
نوع ارائه مقاله
ژورنال
مجله / کنفرانس گزارش های ژنی – Gene Reports
دانشگاه Department of Computer Science – Bharathiar University – India
کلمات کلیدی پیش بینی ساختار پروتئین، تشخیص پروتئین Fold، پیش بینی کلاس ساختاری، شبکه های عصبی مصنوعی، شبکه عصبی مصنوعی پیشرفته
کلمات کلیدی انگلیسی Protein structure prediction, Protein Fold Recognition, Structural Class Prediction, Artificial Neural Network, Enhanced Artificial Neural Network
شناسه دیجیتال – doi
https://doi.org/10.1016/j.genrep.2018.07.012
کد محصول E10182
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Highlights
Abstract
Abbreviations list
Keywords
۱ Introduction
۲ Related work
۳ Methodology
۴ Implementation and discussion
۵ Biological significance
۶ Conclusion
Acknowledgement
References

بخشی از متن مقاله:
ABSTRACT

In Bioinformatics Protein Fold Recognition (PFR) and Structural Class Prediction (SCP) is a significant problem in predicting protein with a three dimensional structure. Extraction of valuable features of protein that consists of 20 amino acids to acquire more desirable classifiers is fundamental to this PFR and SCP. Feature extraction technique predominantly exploits Forward Consecutive Search Scheme (FCS) that supplements syntacticalbased, evolutionary-based and physicochemical-based information. In this research work, a classifier known as Enhanced Artificial Neural Network (ANN) is employed as it is more efficient than Forward Consecutive Search scheme in order to improve the performance of PFR and SCP. The Enhanced ANN algorithm is an improved version of Artificial Neural Network when compared with various existing algorithms such as Support Vector Machine (SVM), ANN, K-Nearest Neighbor (KNN) and the Bayesian. The experiments are conducted on four datasets namely DD, EDD, TG and RDD. Ultimately, the statistical imputation of Enhanced ANN algorithm hypothesizes gives better results than other algorithms to improve the performance of PFR and SCP.

Introduction

Proteins are the components which play important roles in the activities of organisms. Protein’s function depends on the interactions with other proteins and its folding. Mismatch protein folding usually leads to changing in properties of the protein, which causes some diseases (Hashemi et al., 2009). To acquire knowledge about the protein function, interactions and regulations the prediction of protein structural classes is extremely useful (Jian-Yi Yang et al., 2010). To Increase the prediction accuracy of secondary structure and also to reduce the testimony of hunting scope in three dimensional structure predictions, the mastery of the structural class is helpful (Mohammad and AliYaghoubi, 2016). The SCP has become one of the most important features for characterizing the overall folding type of a protein in protein research. The first definition of protein structural class was introduced by Levitt and Chothia in 1976 and the globular proteins are normally classified into four structural classes such as (i) the all-α class consists of only little amount of strands, (ii) the all-β class consists of only little amount of helices, (iii) the α/β class consists of helices and almost all parallel strands, and α + β class consists of helices and almost all anti-parallel strands (Levitt and Chothia, 1976). Basically, the structural class of protein prediction from 20 amino acids is a significant task in the field of molecular biology. Proteins with unique length and similarities to be a part of the same fold having the identical significant protein secondary structure in the identical arrangement with the identical topology certainly they have a regular origin of evolutionary (Yang et al., 2011). PFR is used to model the proteins which have the similar fold as proteins of known structure, but do not have homologous proteins with known protein structure. PFR is the acquiring of three dimensional structure of the protein sequences independent from the sequence identities (Ding and Dubchak, 2001). PFR and SCP are prohibited as a transitional step for identifying the protein three dimensional structures. The PFR and SCP consist of two main concepts such as feature extraction techniques and classification techniques. The main goal of PFR and SCP is to allocate the novel protein sequence to a particular fold type and to a particular class type. Computational approaches considered more attention over the years due to the expense and the time involved in identifying the three dimensional structure of protein by using X-ray crystallography and Nuclear Magnetic Resonance (NMR) (Ibrahim and Abadeh, 2017).

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا