دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقالات پژوهشی کامپیوتردانلود رایگان مقالات پژوهشی مدیریتدانلود رایگان مقالات پژوهشی مهندسی فناوری اطلاعات ITدانلود رایگان مقالات ژورنالی کامپیوتردانلود رایگان مقالات ژورنالی مدیریتدانلود رایگان مقالات ژورنالی مهندسی فناوری اطلاعات ITدانلود رایگان مقالات سال 2018دانلود رایگان مقاله ISI ریسک اعتباری یا نکول به زبان انگلیسیدانلود رایگان مقاله ISI شبکه های عصبی به زبان انگلیسیدانلود رایگان مقاله ISI شبکه های کامپیوتری به زبان انگلیسیدانلود رایگان مقاله ISI مدیریت به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مدیریت مالی به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی فناوری اطلاعات به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مهندسی کامپیوتر به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مهندسی مالی و ریسک به زبان انگلیسیدانلود رایگان مقاله ISI هوش مصنوعی به زبان انگلیسیسال انتشار

مقاله انگلیسی رایگان در مورد ارزیابی ریسک اعتباری سرمایه گذاری – الزویر ۲۰۱۸

 

مشخصات مقاله
انتشار مقاله سال ۲۰۱۸
تعداد صفحات مقاله انگلیسی ۱۱ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه الزویر
نوع نگارش مقاله مقاله پژوهشی (Research article)
نوع مقاله ISI
عنوان انگلیسی مقاله Enterprise Credit Risk Evaluation Based on Neural Network Algorithm
ترجمه عنوان مقاله ارزیابی ریسک اعتباری سرمایه گذاری بر اساس الگوریتم شبکه عصبی
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مدیریت، مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط مهندسی مالی و ریسک، مدیریت مالی، هوش مصنوعی، شبکه های کامپیوتری
مجله تحقیقات سیستم های شناختی – Cognitive Systems Research
دانشگاه School of Business – Gannan Normal University – China
کلمات کلیدی ارزیابی ریسک اعتباری؛ هوش مصنوعی؛ شبکه عصبی
کلمات کلیدی انگلیسی credit risk assessment; artificial intelligence; neural network
شناسه دیجیتال – doi
https://doi.org/10.1016/j.cogsys.2018.07.023
کد محصول E8769
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:
۱٫ Introduction

Credit risk is an important issue in the decision-making and profit of the banking industry. Credit risk is still a single biggest risk that is difficult to offset for banks and it expresses the concept of future loss. Because the customer does not fulfil the repayment obligation, the credit risk also embodies the loss of the bank’s profit. Usually, the general approach of credit risk assessment is to apply the classification model to past customer data, including default and non-default customers, so as to find the relationship between user characteristics and potential default. The credit risk assessment model based on statistical data has become the main analysis tool for the financial institutions to assess the credit risk. By analysing the multiple risk factors of the evaluation object, the credit risk assessment is an independent process of assessing the borrower’s willingness and ability to repay. The credit risk assessment model has been widely used to assess corporate risk by bond investors, debt issuers, and government officials. They provide a means to determine the risk premium and bond market, so that companies can assess the possible return on investment to issue bonds. The advantages of building a credible credit risk assessment system are: reducing the cost of credit analysis, ensuring fast decision-making, guaranteeing credit collection and reducing possible risks. The credit risk assessment was initially judged by the personal experience manager, and then based on the 5C factor. However, with the rapid increase of applicants, it is almost impossible to do the work manually. Many institutions in the credit industry are proposing new models to support credit decisions. Recent studies have shown that the existing artificial intelligence (AI) technology, such as decision tree (DT), support vector machine (SVM) and so on, in the problem of credit risk assessment, shows a better performance than the statistical model and optimization method. Different from statistical models, AI model does not require the assumption of variable distribution, and can acquire knowledge directly from training data sets. In the field of credit risk assessment, especially when the credit risk assessment problem is nonlinear mode classification, the performance of AI model is better than that of the statistical model.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا