دانلود رایگان مقالات اسپرینگر - springerدانلود رایگان مقالات پژوهشی عمراندانلود رایگان مقالات ژورنالی عمراندانلود رایگان مقالات سال 2018دانلود رایگان مقاله ISI خاک و پی یا ژئوتکنیک به زبان انگلیسیدانلود رایگان مقاله ISI سازه به زبان انگلیسیدانلود رایگان مقاله ISI ظرفیت باربری به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی عمران به زبان انگلیسی سال 2022 و 2023سال انتشار

مقاله انگلیسی رایگان در مورد ظرفیت باربری لرزه ای پی کم عمق در خاک آهکی – اسپرینگر ۲۰۱۸

 

مشخصات مقاله
انتشار مقاله سال ۲۰۱۸
تعداد صفحات مقاله انگلیسی ۹ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه اسپرینگر
نوع نگارش مقاله مقاله پژوهشی (Research article)
نوع مقاله ISI
عنوان انگلیسی مقاله Evaluation of the Seismic Bearing Capacity of Shallow Foundations Located on the Two-Layered Clayey Soils
ترجمه عنوان مقاله ارزیابی ظرفیت باربری لرزه ای پی های کم عمق واقع در خاک های آهکی دو لایه
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مهندسی عمران
گرایش های مرتبط خاک و پی، سازه
مجله مجله ایرانی علوم و فناوری، معاملات مهندسی عمران – Iranian Journal of Science and Technology Transactions of Civil Engineering
دانشگاه Department of Civil Engineering – Shahid Chamran University of Ahvaz – Iran
کلمات کلیدی خاک دو لایه، نسبت چسبندگی، ظرفیت باربری لرزه ای، تعادل حدی، شتاب زمین حداکثر
کلمات کلیدی انگلیسی Two-layer soil, Cohesion ratio, Seismic bearing capacity, Limit equilibrium, Peak ground acceleration
شناسه دیجیتال – doi
https://doi.org/10.1007/s40996-018-0122-3
کد محصول E8713
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:
۱ Introduction

The most severe loading condition a foundation undergoes is what happens during an earthquake. Thus, the design of foundations in seismic areas needs special consideration compared to the static case. Some researchers have studied the seismic bearing capacity of shallow strip footings, either theoretically or experimentally. Three main approaches are followed in theoretical studies: pseudo-static, pseudo-dynamic and full dynamic analysis. In pseudo-static approach, horizontal and vertical accelerations are applied to the center of gravity of the structure or at the foundation level, and the problem is reduced to a static case of bearing capacity with inclined eccentric loads. In most of these solutions, the inertia of the soil mass is not included. In a pseudo-dynamic approach, the failure surface developed during dynamic condition is assumed to be similar to the one under static loading and the equation of motion is derived from the dynamic equilibrium conditions. In this context, the effect of the earthquake on supporting soil is included in the equilibrium equation. Also, the distribution of earthquake acceleration is included. The full dynamic approach is based on time-history analysis using numerical methods. The majority of the earlier studies are analytic in the context of pseudo-static approach. These studies use several different solution methods such as limit equilibrium, stress characteristics, limit analysis and variational methods. The first studies performed in limit equilibrium context did not include the inertia force on soil (Triandafilidis 1965). Subsequent studies considered the seismic forces both on the structure and on the supporting soil mass (Sarma and Iossifelis 1990; Richards et al. 1993; Kumar and Kumar 2003; Tiznado and Paillao 2014). In most of these cases, the failure surface is assumed to be a constant log-spiral (Fig. 1), the focus of which is at the edge of the footing, which is not supported by the actual performance of foundations. Merlos and Romo (2006) presented a new method in which time-varying inertia forces are applied directly to the building. This method is capable of estimating vertical displacements and foundation tilting by integrating the angular moment equilibrium differential equation. The position of the failure surface was obtained by a minimization process at every time increment. Results showed that under an earthquake loading the potential failure surface moves upward and its length shortens as the seismic accelerations increase, reducing the bearing capacity. Some researchers used the upper bound theorem of limit state analysis (Richards et al. 1993; Dormieux and Pecker 1995; Paolucci and Pecker 1997; Soubra 1999; Ghazavi and Parsapajouh 2006) to study the problem in a more rigorous way.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا