مشخصات مقاله | |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 10 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Fast face recognition based on fractal theory |
ترجمه عنوان مقاله | تشخیص چهره سریع بر اساس نظریه فراکتال |
نمایه (index) |
Scopus – Master Journal List – JCR
|
ایمپکت فاکتور(IF) |
2.366 در سال 2017 |
شاخص H_index |
117 در سال 2019 |
شاخص SJR |
1.065 در سال 2017 |
شناسه ISSN |
0096-3003
|
شاخص Quartile (چارک) |
Q1 در سال 2017
|
فرمت مقاله انگلیسی | |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | هوش مصنوعی |
نوع ارائه مقاله |
زورنال |
مجله | ریاضیات و محاسبات کاربردی – Applied Mathematics and Computation |
دانشگاه | School of Mechatronic Engineering and Automation |
کلمات کلیدی | تشخیص چهره، نظریه فراکتال، کد فراکتال |
کلمات کلیدی انگلیسی |
Face recognition; Fractal theory; Fractal code
|
شناسه دیجیتال – doi | |
کد محصول | E5642 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
1. Introduction
Recently, a large number of biological features have been are applied to identity recognition, such as iris recognition, fingerprint recognition, gait recognition and face recognition. These biological features are easy to use, to distinguish and difficult to forge. Compared with other methods, non touching and aggression are the biggest advantages and features of face recognition. As a hot topic, more and more attention has been focused on the face recognition. Face recognition is considered to have broad application prospects in video surveillance, access control system, criminal investigation and other fields [1–7]. General face recognition methods can be broadly divided into two categories of local and global approaches [8]. The task of those local methods is to extract different local features. For another, global approaches process the entire image and make a general template for the face [8]. It should be noted that some deep learning methods such as Convolution Neural Network (CNN) and tensor face also achieve good results. Global approaches usually adopt a projection technique to manipulate the image as a whole and create a general template for each face pattern. The main work is to find the best template which can describe the test object. Eigenface and Fisherface are the most famous methods in this category. In the eigenface, Principle Component Analysis (PCA) is proposed and can reduce the dimension effectively. It projects images into a low-dimension space and seeks a linear transformation matrix that maximizes the data variance in the projection subspace [9]. Another linear projection is insensitive to variation in lighting direction and facial expression which is implemented by Fisher’s Linear Discriminant Analysis (LDA). LDA is a supervised scheme that aims at minimizing the within-class variances as well as maximizing the between-class distances in the projection subspace [9]. |