مقاله انگلیسی رایگان در مورد شبیه سازی و ارزیابی ریسک فیزیکی مونت کارلو در ساخت و ساز – وایلی ۲۰۱۰

wiley

 

مشخصات مقاله
ترجمه عنوان مقاله شبیه سازی و ارزیابی ریسک فیزیکی مونت کارلو در ساخت و ساز
عنوان انگلیسی مقاله Fuzzy Monte Carlo Simulation and Risk Assessment in Construction
انتشار مقاله سال ۲۰۱۰
تعداد صفحات مقاله انگلیسی  ۱۴ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه وایلی
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۵٫۴۷۵ در سال ۲۰۱۷
شاخص H_index ۶۱ در سال ۲۰۱۸
شاخص SJR ۱٫۱۵۴ در سال ۲۰۱۸
رشته های مرتبط  مهندسی عمران – مهندسی کامپیوتر
گرایش های مرتبط  سازه – مدیریت ساخت – الگوریتم و محاسبات
نوع ارائه مقاله
ژورنال
مجله / کنفرانس Computer-Aided Civil and Infrastructure Engineering
دانشگاه Department of Civil & Environmental Engineering, University of Alberta, 3‐۱۳۳ Markin/CNRL Natural Resources Engineering Facility, Edmonton, Alberta, Canada T6G 2W2
شناسه دیجیتال – doi
https://doi.org/10.1111/j.1467-8667.2009.00632.x
کد محصول E11766
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:

Abstract

Monte Carlo simulation has been used extensively for addressing probabilistic uncertainty in range estimating for construction projects. However, subjective and linguistically expressed information results in added non-probabilistic uncertainty in construction management. Fuzzy logic has been used successfully for representing such uncertainties in construction projects. In practice, an approach that can handle both random and fuzzy uncertainties in a risk assessment model is necessary. This article discusses the deficiencies of the available methods and proposes a Fuzzy Monte Carlo Simulation (FMCS) framework for risk analysis of construction projects. In this framework, we construct a fuzzy cumulative distribution function as a novel way to represent uncertainty. To verify the feasibility of the FMCS framework and demonstrate its main features, the authors have developed a special purpose simulation template for cost range estimating. This template is employed to estimate the cost of a highway overpass project.

Introduction

Performing risk analysis using Monte Carlo simulation is very common in construction project management; traditionally, probability theory is used to model uncertainty regarding simulation model inputs. In practice, the probability of an event can be estimated according to the frequency of that event occurring in a number of experiments (Pedrycz, 1998). However, if the number of experiments is not large enough to be significant, and more experiments cannot be performed, it is not possible to accurately estimate the event’s probability. In these circumstances, we can engage human experts who are usually good at supplying the required information. Some researchers try to convert experts’ knowledge into probabilistic distributions. This estimated probability may be used directly in a risk analysis problem (Ahuja et al., 1994), or it may be combined with available data using Bayesian methods to estimate a parameter that considers both subjective judgment and historical data (Garthwaite et al., 2005). However, there are some criticisms on performing probabilistic analysis on subjective and linguistically expressed data because subjective reasoning of individuals may not be appropriate for objective scientific conclusions (Goldstein, 2006). In other words, the information gained from experts is subjective and contains ambiguity, and there is a chance of introducing artificial knowledge that is not actually available to the model using probability values gained from experts (Guyonnet et al., 2003).

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *