مشخصات مقاله | |
انتشار | مقاله سال 2017 |
تعداد صفحات مقاله انگلیسی | 31 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه امرالد |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Human resource allocation in business process management and process mining A systematic mapping study |
ترجمه عنوان مقاله | توزیع منابع انسانی در مدیریت فرآیند کسب و کار و نقشه برداری سیستماتیک |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.656 در سال 2017 |
شاخص H_index | 77 در سال 2019 |
شاخص SJR | 0.541 در سال 2017 |
شناسه ISSN | 0025-1747 |
شاخص Quartile (چارک) | Q2 در سال 2017 |
رشته های مرتبط | مدیریت |
گرایش های مرتبط | مدیریت منابع انسانی – مدیریت کسب و کار |
نوع ارائه مقاله |
ژورنال |
مجله | تصمیم گیری در مدیریت – Management Decision |
دانشگاه | Department of Computer Science – School of Engineering – Santiago – Marques |
کلمات کلیدی | مدیریت فرایند کسب و کار، مدیریت منابع، فرایند کاوی، تخصیص منابع انسانی، مطالعه نقشه برداری سیستماتیک |
کلمات کلیدی انگلیسی | Business process management, Resource management, Process mining, Human resource allocation, Systematic mapping study |
شناسه دیجیتال – doi |
https://doi.org/10.1108/MD-05-2017-0476 |
کد محصول | E5804 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
Introduction Business process management (BPM) is the art and science of overseeing how work is performed in an organization to ensure consistent outcomes and to take advantage of improvement opportunities (Dumas et al., 2013). Typically, these improvement opportunities include reductions in cost and execution times, enhanced quality and efficiency, as well as better productivity of processes (Arias et al., 2015). In recent years, the use of information systems in different organizations has increased, thereby facilitating the storage of information relating to the activities that are executed in distinct processes (e.g. case ID, activity name, timestamp, resource) in event logs. This information, also known as event data, can be used to improve end-to-end processes (van der Aalst, 2016). Accordingly, there is an emerging discipline, called process mining, which focuses on extracting useful knowledge based on the information stored in the event logs (van der Aalst, 2016). Process mining can be seen as a means to bridge the gap between Data Science and Process Science, where Data science refers to an interdisciplinary field that aims to extract real value from data, and Process Science refers to a broader discipline that combines knowledge from information technology and management sciences to improve and run operational processes (van der Aalst, 2016). Both BPM and process mining are interested in profoundly analyzing business processes. In conjunction with the methods, techniques and tools created for the design, execution and analysis of operational business processes (van der Aalst, 2013), there is also a central aspect to consider within BPM and process mining: the resource perspective (Dumas et al., 2013), also known as the organizational perspective (van der Aalst, 2016). This perspective focuses on the analysis of information related to the resources that are in charge of executing the activities of a business process (e.g. human resources, software systems, and equipment, among others) (Dumas et al., 2013). This helps to generate insights into how the resources work and it facilitates a more in-depth study of their behavior regarding the processes (Guo et al., 2013; Huang et al., 2012a). In particular, human resource allocation has been considered as a significant problem within the context of BPM (Huang et al., 2012b; Wibisono et al., 2015; Xu et al., 2008; Zhao and Zhao, 2014), due to the influence that the correct allocation may have on the performance of the process (Liu et al., 2014; Zhao and Zhao, 2014), on costs (Huang et al., 2011; Obregon et al., 2013), and on the efficient use of resources during the process execution (Fadol et al., 2015; Kumar et al., 2002; Xu et al., 2008). |