مشخصات مقاله | |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 6 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه IEEE |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Location and Fault Detection of Catenary Support Components Based on Deep Learning |
ترجمه عنوان مقاله | تشخیص مکان و خطای مولفه های پشتیبانی کانکتور بر اساس یادگیری عمیق |
فرمت مقاله انگلیسی | |
رشته های مرتبط | مهندسی برق، مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی کنترل، مکاترونیک، مهندسی الکترونیک، هوش مصنوعی |
مجله | کنفرانس بین المللی فناوری اندازه گیری و ابزار – International Instrumentation and Measurement Technology Conference |
کلمات کلیدی | راه آهن، اجزای پشتیبانی شبکه، یادگیری عمیق، محل هدف، تشخیص گسل |
کلمات کلیدی انگلیسی | railway, catenary support components, deep learning, target location, faults detection |
شناسه دیجیتال – doi |
https://doi.org/10.1109/I2MTC.2018.8409637 |
کد محصول | E8669 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
I. INTRODUCTION
ATENARY is an important part of the traction power supply system in highspeed railways, and it consists of some catenary support components (CSCs), such as Insulator, Rotary double ear, Brace sleeve. Fig. 1 shows the positions of all the crucial CSCs in the catenary system. The normal state of CSCs is the basis of the normal operation of highspeed trains. However, fault states of CSCs could occur due to the vibration caused by vehicles and the complex natural environment near the railway. Typical CSCs faults include breakage and fracture of the component, missing and looseness of the fasteners, and other fault states, as shown in Fig. 2. To ensure the power transmission from the catenary system to vehicles normally, it is essential to inspect the working states of CSCs. In this work, visionbased methods are generally used for CSCs inspection. The highresolution cameras and LED lights are mounted on the top of a specific inspection vehicle, which moves along the railway and captures images of CSCs. Then intelligent algorithms are applied to process these images and detect the faults. Usually, the inspection of CSCs faults can be divided into two steps. First, CSCs are located in the raw image. Second, different fault detection methods are applied to different types of CSCs. At present, approaches are mainly based on the grayscale and edge information of located CSCs. If the location of CSCs is not accurate, the fault detection result may not be correct either. In the past decade, local feature descriptors such as SIFT (Scaleinvariant feature transform) [1] descriptors, HOG (Histogram of Orientated Gradients) [2] features, LBP (Local Binary Pattern) [3] features and DPM (deformable part models) [4], have been popular and important methods in object location area. Although these methods can be used to locate CSCs, the accuracy needs to be improved when the image is complex. Besides, their processing speed is not fas enough for large amounts of captured images. |