مقاله انگلیسی رایگان در مورد ظهور یادگیری ماشینی برای شناسایی و طبقه بندی بدافزارها – الزویر 2020

 

مشخصات مقاله
ترجمه عنوان مقاله ظهور یادگیری ماشینی برای شناسایی و طبقه بندی بدافزارها: تحولات تحقیق، روندها و چالش ها
عنوان انگلیسی مقاله The rise of machine learning for detection and classification of malware: Research developments, trends and challenges
انتشار مقاله سال 2020
تعداد صفحات مقاله انگلیسی 22 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله مروری (Review Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
7.092 در سال 2019
شاخص H_index 77 در سال 2020
شاخص SJR 0.903 در سال 2019
شناسه ISSN 1084-8045
شاخص Quartile (چارک) Q1 در سال 2019
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط کامپیوتر
گرایش های مرتبط هوش مصنوعی، امنیت اطلاعات، مهندسی نرم افزار
نوع ارائه مقاله
ژورنال
مجله  مجله برنامه های کاربردی شبکه و رایانه – Journal Of Network And Computer Applications
دانشگاه University of Lleida, Jaume II, 69, Lleida, Spain
کلمات کلیدی شناسایی بدافزارها، مهندسی ویژگی، یادگیری ماشین، یادگیری عمیق، یادگیری چندوجهی
کلمات کلیدی انگلیسی Malware detection، Feature engineering، Machine learning، Deep learning، Multimodal learning
شناسه دیجیتال – doi
https://doi.org/10.1016/j.jnca.2019.102526
کد محصول E14346
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

1- Introduction

2- Related work

3- Background

4- Traditional machine learning approaches

5- Deep learning approaches

6- Multimodal approaches

7- Research issues and challenges

8- Conclusions

References

بخشی از متن مقاله:

Abstract

The struggle between security analysts and malware developers is a never-ending battle with the complexity of malware changing as quickly as innovation grows. Current state-of-the-art research focus on the development and application of machine learning techniques for malware detection due to its ability to keep pace with malware evolution. This survey aims at providing a systematic and detailed overview of machine learning techniques for malware detection and in particular, deep learning techniques. The main contributions of the paper are: (1) it provides a complete description of the methods and features in a traditional machine learning workflow for malware detection and classification, (2) it explores the challenges and limitations of traditional machine learning and (3) it analyzes recent trends and developments in the field with special emphasis on deep learning approaches. Furthermore, (4) it presents the research issues and unsolved challenges of the state-of-the-art techniques and (5) it discusses the new directions of research. The survey helps researchers to have an understanding of the malware detection field and of the new developments and directions of research explored by the scientific community to tackle the problem.

Introduction

A brief look at the history of malicious software reminds us that the presence of malware threats has been with us since the dawn of computing. The earliest documented virus appeared during the 1970s. It was known as the Creeper Worm and was an experimental self-replicating program that copied itself to remote systems and displayed the message: “I’m the creeper, catch me if you can”. Later, in the early 80s, appeared Elk Cloner, a boot-sector virus that targeted Apply II computers. From these simple beginnings, a massive industry was born and, since then, the fight against malware has never stopped. By the looks of it, this fight turned out to be a never-ending and cyclical arms race: as security analysts and researchers improve their defenses, malware developers continue to innovate, find new infection vectors and enhance their obfuscation techniques. Malware threats continue to expand vertically (i.e. numbers and volumes) and horizontally (i.e. types and functionality) due to the opportunities provided by technological advances. Internet, social networks, smartphones, IoT devices and so on, make it possible for the creation of smart and sophisticated malware.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا