مشخصات مقاله | |
ترجمه عنوان مقاله | یادگیری ماشین در شبکه نرم افزار محور |
عنوان انگلیسی مقاله | Machine Learning in Software Defined Network |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 7 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
مقاله بیس | این مقاله بیس نمیباشد |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | مهندسی نرم افزار، هوش مصنوعی، معماری سیستم های کامپیوتری |
نوع ارائه مقاله |
کنفرانس |
کنفرانس | سومین کنفرانس کنترل فناوری اطلاعات، شبکه سازی، الکترونیک و اتوماسیون – 3rd Information Technology, Networking, Electronic and Automation Control Conference |
دانشگاه | College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot, China |
کلمات کلیدی | یادگیری ماشین، شبکه نرم افزار محور، SDN |
کلمات کلیدی انگلیسی | Machine Learning، Software Defined Network، SDN |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ITNEC.2019.8729331 |
کد محصول | E13331 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
I- INTRODUCTION II- RELATED WORK III- MACHINE LEARNING FOR SDN SECURITY IV- MACHINE LEARNING FOR TRAFFIC CLASSIFICATION V- CONCLUSIONS REFERENCES |
بخشی از متن مقاله: |
Abstract As a new network architecture, software defined network (SDN) separates the control plane from the forwarding plane which enables administrators to define and control the network through the method of software programming, provides a new research direction for the next generation of network architecture. At the same time, the machine learning technology has been developed rapidly in recent years and some studies have begun to introduce machine learning methods into SDN to improve the efficiency of network management and conformity, or to solve problems that cannot be solved easily by traditional methods. The paper analyses, summarizes and introduces these researches which used the supervised learning, unsupervised learning or semi-supervised learning methods to solve some specific problems on SDN, and it will help later researchers understand the filed more quickly and promote the development of the machine learning technology in SDN. INTRODUCTION The machine learning is an important branch of artificial intelligence research area, and various machine learning algorithms such as Support Vector Machine (SVM) [1], KNearest Neighbor (KNN) [2], Logistic Regression (Logistic Regression) [3], Boosting [4], etc. have been widely used to solve complex problems in engineering and science fields. The emergences of big data and GPU technology provide more powerful support for the development of machine learning technology. The deep learning [5] proposed by Geoffrey Hinton et al. in 2006 pushed the machine learning to a new climax, and made machine learning rapidly develop into an independent area and be applied to various fields, such as pattern recognition, data mining, bioinformatics and autonomous driving, etc. Clark proposed a network architecture of “A Knowledge Plane for the Internet” in 2003, which relies on machine learning and cognitive technology to manipulate the network [6]. The knowledge plane (KP) would bring many benefits to the network and change the way we operate, optimize and troubleshoot the network. But the distributed network architecture results in that each node (i.e., switches, routers) only has a partial view of the entire system, which makes it a huge challenge to apply machine learning to the network. Logical centralized control will alleviate the complexity of learning in a distributed environment. |