مشخصات مقاله | |
ترجمه عنوان مقاله | مدل سازی و به حداکثر رساندن گسترش نفوذ در شبکه های اجتماعی برای بازاریابی ویروسی |
عنوان انگلیسی مقاله | Modeling and maximizing influence diffusion in social networks for viral marketing |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 26 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه اسپرینگر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – DOAJ |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
شناسه ISSN | 2364-8228 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مدیریت |
گرایش های مرتبط | بازاریابی، مدیریت فناوری اطلاعات، مدیریت بازرگانی |
نوع ارائه مقاله |
ژورنال |
مجله | علوم شبکه کاربردی – Applied Network Science |
دانشگاه | 1Department of Management Sciences, University of Iowa, 21 E Market St, Iowa City IA 52242, USA |
کلمات کلیدی | گسترش نفوذ، به حداکثر رساندن نفوذ، شبکه های اجتماعی، بازاریابی ویروسی |
کلمات کلیدی انگلیسی | Influence diffusion، Influence maximization، Social network، Viral marketing |
شناسه دیجیتال – doi |
https://doi.org/10.1007/s41109-018-0062-7 |
کد محصول | E12612 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
Introduction Related research Methodology Experiments Conclusion References |
بخشی از متن مقاله: |
Abstract Modeling influence diffusion in social networks is an important challenge. We investigate influence-diffusion modeling and maximization in the setting of viral marketing, in which a node’s influence is measured by the number of nodes it can activate to adopt a new technology or purchase a new product. One of the fundamental problems in viral marketing is to find a small set of initial adopters who can trigger the most further adoptions through word-of-mouth-based influence propagation in the network. We propose a novel multiple-path asynchronous threshold (MAT) model, in which we quantify influence and track its diffusion and aggregation. Our MAT model captures not only direct influence from neighboring influencers but also indirect influence passed along by messengers. Moreover, our MAT framework models influence attenuation along diffusion paths, temporal influence decay, and individual diffusion dynamics. Our work is an important step toward a more realistic diffusion model. Further, we develop an effective and efficient heuristic to tackle the influence-maximization problem. Our experiments on four real-life networks demonstrate its excellent performance in terms of both influence spread and time efficiency. Our work provides preliminary but significant insights and implications for diffusion research and marketing practice. Introduction People live in various social networks, and share information and ideas with friends in the form of word-of-mouth (WOM) communication. New technologies and various social media rapidly penetrate into every aspect of our daily life, and provide us new channels and great convenience to exchange information and express opinions. They disseminate massive volumes of information over different social media, and spread influence to each other. As social media becomes prevalent, its influence on business, politics and society becomes evident and significant. How new innovations, behaviors, and diseases spread through social networks has a long history of study in social sciences. Research in this area has exploded and drawn considerable attention from many disciplines over the last decade. Many models of information and influence diffusion have been proposed for a wide variety of applications, such as viral marketing (Kempe et al. 2003; Bhagat et al. 2012), cascading behavior and prediction (Leskovec et al. 2007; Cheng et al. 2014), information spreading (Morales et al. 2014), outbreak detection (Leskovec et al. 2007), etc. |