مشخصات مقاله | |
ترجمه عنوان مقاله | یک طرح عددی کارآمد برای حل موج های نفوذ کسر و معادلات کلاین گوردون کسری در مکانیک سیالات |
عنوان انگلیسی مقاله | An efficient numerical scheme to solve fractional diffusion-wave and fractional Klein–Gordon equations in fluid mechanics |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 23 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
2.132 در سال 2017 |
شاخص H_index | 133 در سال 2018 |
شاخص SJR | 0.773 در سال 2018 |
رشته های مرتبط | مهندسی مکانیک |
گرایش های مرتبط | مکانیک سیالات |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | Physica A |
دانشگاه | Department of Mathematics – Islamic Azad University – Iran |
کلمات کلیدی | معادله کلین گوردون کسری، معادله نفوذ موج کسر، معادله کلاین گوردون تجزیه کننده کسری، چندجمله ای افقی لژاندر، ماتریس عملیاتی |
کلمات کلیدی انگلیسی | fractional Klein-Gordon equation, fractional diffusion-wave equation, fractional dissipative Klein-Gordon equation, shifted Legendre polynomials, operational matrix |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.physa.2018.08.086 |
کد محصول | E10257 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Highlights Abstract Keywords 1 Introduction 2 Background materials and preliminaries 3 Numerical method 4 Error analysis 5 Numerical experiments 6 Concluding remarks Acknowledgments References |
بخشی از متن مقاله: |
Abstract
The numerous applications of time fractional partial differential equations in different fields of science especially in fluid mechanics necessitate the presentation of an efficient numerical method to solve them. In this paper, Galerkin method and operational matrix of fractional Riemann-Liouville integration for shifted Legendre polynomials has been applied to solve these equations. Some definitions for fractional calculus along with some basic properties of shifted Legendre polynomials have also been put forth. When approximations are substituted into the fractional partial differential equations, a set of algebraic equations would be resulted. The convergence of the suggested method was also depicted. In the end, the linear time fractional Klein-Gordon equation, dissipative KleinGordon equations and diffusion-wave equations were utilized as three examples so as to study the performance of the numerical scheme. Introduction In recent years, with the rapid development of nonlinear sciences, the theory of fractional differential equations have developed progressively and researchers have found that derivatives and integrals of non integer order are more suitable and accurate than integer-order equations for modeling some real world problems. These equations have attracted substantial attention of many investigator because they have practical applications in diverse areas of science and engineering such as bioengineering [1], anomalous transport [2], solid mechanics [3], continuum and statistical mechanics [4], nonlinear oscillation of earthquakes [5], economics[6], fluid dynamic [7], colored noise [8], viscoelastic damping [9] -[11] and modelling of an ultracapacitor [12] or the heating process [13], etc. Numerical solutions of these kind of fractional equations have been investigated by several authors [14]-[30]. |