مشخصات مقاله | |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 19 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه الزویر |
نوع نگارش مقاله | مقاله پژوهشی (Research article) |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Prediction of human protein subcellular localization using deep learning |
ترجمه عنوان مقاله | پیش بینی محلی سازی زیرسلولی های پروتئین انسانی با استفاده از یادگیری عمیق |
فرمت مقاله انگلیسی | |
رشته های مرتبط | زیست شناسی و مهندسی کامپیوتر |
گرایش های مرتبط | هوش مصنوعی |
مجله | مجله محاسبات موازی و توزیع شده – Journal of Parallel and Distributed Computing |
دانشگاه | School of Computer Science and Technology – Tianjin University – China |
کلمات کلیدی | محلی سازی زیر سلولی پروتئین؛ نمایش ویژگی؛ یادگیری عمیق |
کلمات کلیدی انگلیسی | Protein subcellular localization; Feature representation; Deep learning. |
شناسه دیجیتال – doi |
http://dx.doi.org/10.1016/j.jpdc.2017.08.009 |
کد محصول | E8648 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
Introduction
Knowledge of the subcellular localization of proteins is critical for the understanding of their functions and biological processes in cells. Protein subcellular location information is of highly importance in various areas of research, such as drug design, therapeutic target discovery, and biological research, etc [1]. Accurate prediction of protein subcellular localization is the prequiste to help in-depth understanding and analysis of various protein functions. As the wide applications of next sequencing techniques, protein sequences have accumulated rapidly during the last decades [2, 3]. Facing with such large-scale sequences, experimental determination of their protein subcellular locations is extremely inefficient and expensive in this post-genomic era. Therefore, effective and efficient computational methods are desired to assist biologists to address these experimental problems. During the past few years, many computational efforts have been done for predicting protein subcellular locations, thus generating a serious of computational methods. Most of high-performance computational methods use machine learning algorithms together with diverse feature representations to make predictions [4-8]. These machine learning based methods can be roughly divided into two classes: (1) sequence-based, and (2) annotation-based. Sequence-based methods use sequential information from primary sequences of proteins. For instance, Park et al. [9] trained a set of SVMs based on multiple sequence-based feature descriptors, such as amino acid composition, amino acid pair, and gapped amino acid pair composition, and proposed a voting scheme using the trained SVMs to predict protein subcellular locations. The upcoming problem is that features based on amino acid pair composition would lost sequence order effect. In order to address this problem, Chou et al. [10] proposed a modified feature encoding method, namely Pseudo Amino Acid Composition (PseAAC), sufficiently taking the sequence order information for the remarkable improvement of the predictive performance. Most recently, Rahman et al. [11] proposed to fuse PseAAC, physiochemical property model (PPM), and amino acid index distribution (AAID) to improve the prediction accuracy. Moreover, other sequential information such as the sequence homology and sorting signals are often used to train machine learning models [12-15]. |