مشخصات مقاله | |
ترجمه عنوان مقاله | پیش بینی بارش در ایالت کرالا در هند با استفاده از روش های هوش مصنوعی |
عنوان انگلیسی مقاله | Rainfall prediction for the Kerala state of India using artificial intelligence approaches |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 8 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.747 در سال 2017 |
شاخص H_index | 43 در سال 2018 |
شاخص SJR | 0.401 در سال 2018 |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | هوش مصنوعی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | کامپیوترها و مهندسی برق – Computers and Electrical Engineering |
دانشگاه | Centre for Atmospheric Sciences – IIT Delhi – New Delhi – India |
کلمات کلیدی | نزدیک ترین K همسایه (KNN)، شبکه عصبی مصنوعی (ANN)، ماشین یادگیری اکسترم (ELM)، مدل سازی پیش بینی شده، هوش مصنوعی |
کلمات کلیدی انگلیسی | K-nearest neighbor (KNN), Artificial neural network (ANN), Extreme learning machine (ELM), Predictive modeling, Artificial intelligence |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.compeleceng.2018.06.004 |
کد محصول | E10205 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Keywords 1 Introduction 2 Methodology 3 Result and discussion 4 Conclusion Acknowledgements References Vitae |
بخشی از متن مقاله: |
ABSTRACT
Three artificial intelligence approaches – K-nearest neighbor (KNN), artificial neural network (ANN), and extreme learning machine (ELM) – are used for the seasonal forecasting of summer monsoon (June-September) and post-monsoon (October-December) rainfall from 2011 to 2016 for the Kerala state of India and performance of these techniques are evaluated against observations. All the aforesaid techniques have performed reasonably well and in comparison, ELM technique has shown better performance with minimal mean absolute percentage error scores for summer monsoon (3.075) and post-monsoon (3.149) respectively than KNN and ANN techniques. The prediction accuracy is highly influenced by the number of hidden nodes in the hidden layer and more accurate results are provided by the ELM architecture (8-15-1). This study reveals that the proposed artificial intelligence approaches have the potential of predicting both summer monsoon and post-monsoon of the Kerala state of India with minimal prediction error scores. Introduction Accurate prediction of rainfall is highly desirable for states like Kerala where economy of the state and livelihood of people are highly sensitive to rainfall. Kerala receives approximately 2.5 times higher annual mean rainfall than the average of all India rainfall, nevertheless the state needs to resolve water scarcity issues in the upcoming years as the majority of the rainwater flows into the Arabian Sea within 48 to 72 hours of rainfall [1]. Summer monsoon and post-monsoon are the two rainfall seasons occur in the state. Summer monsoon occurs from June to September (JJAS) and is the primary rainy season of the state. Owing to wind reversal, the state has also received rainfall during the post-monsoon period which occurs from October to December (OND) [2]. Previous studies on Kerala have focused upon the spatial and temporal analysis, onset of rainfall, and trend analysis of rainfall for the state [3–10]. Rainfall is significantly influenced by the overall physiography of the state [5]. The decreased trend of rainfall over the southern part of the state has been observed [6]. Significantly increased rainfall trend during post-monsoon and decreased trend during summer monsoon were observed [7]. According to the recent studies, surface air temperature has shown an increasing trend and a decreasing trend has been observed for the annual rainfall over the state [10–13]. As per our previous study [14], the annual rainfall anomaly has shown a decreasing trend for the state. Prediction of rainfall is a challenging task as it depends on various environmental factors. The regional climate and the economy of the Kerala state are highly influenced by the monsoon rainfall. Kerala has been affected by drought repeatedly in 2015 and 2016 [11]. Rainfall is classified into excess (≥20%), normal ( ± 19%), deficient (−20% to −59%), and scanty (≤60%) [15]. |