مشخصات مقاله | |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 15 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه IEEE |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Rumor Source Identification in Social Networks with Time-Varying Topology |
ترجمه عنوان مقاله | شناسایی منبع شایعه در شبکه های اجتماعی با توپولوژی متغیر با زمان |
فرمت مقاله انگلیسی | |
رشته های مرتبط | فناوری اطلاعات |
گرایش های مرتبط | اینترنت و شبکه های گسترده، رایانش امن |
مجله | یافته ها در زمینه محاسبات قابل اعتماد و امن – Transactions on Dependable and Secure Computing |
دانشگاه | School of Information Technology – Deakin University – Australia |
کلمات کلیدی | شبکه های اجتماعی Time-varying، گسترش شایعه، شناسایی منبع، مقیاس پذیری |
کد محصول | E5654 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
1 INTRODUCTION
RUMORS spreading in social networks have long been a critical threat to our society. A recent incident of rumors “Obama was injured in two explosions of White House” led to 10 billion USD losses in a few hours. This demonstrates that a single rumor can cause great damage to business and life [1]. Nowadays, with the development of mobile devices and wireless techniques, the temporal nature of social networks (time-varying social networks) has a deep influence on dynamical information spreading processes occurring on top of them [2]. The ubiquity and easy access of social networks not only promote the efficiency of information sharing but also dramatically accelerate the speed of rumor spreading [3]. Rumors combine the characteristics of the “word-of-mouth” spreading scheme with the dynamic connections between individuals in time-varying social networks [4]. For either forensic or defensive purposes, it has always been a significant work to identify the source of rumors in time-varying social networks [5]. However, the existing techniques generally require firm connections between individuals (i.e., static networks) so that administrators can trace back along the determined connections to reach the spreading sources. For example, many methods rely on identifying spanning trees in networks [6]–[8], then the roots of the spanning trees are regarded as the rumor sources. The firm connections between users are the premise of constructing spanning trees in these methods. Some other methods detect rumor sources by measuring node centralities [9], [10]. The individual who has the maximum centrality value is considered as the rumor source. All of these centrality measures are based on static networks. Time-varying social networks, where users and interactions evolve over time, have led to great challenges to the traditional rumor source identification techniques. |