دانلود رایگان مقالات اسپرینگر - springerدانلود رایگان مقالات سال 2018دانلود رایگان مقاله ISI آمار به زبان انگلیسیدانلود رایگان مقاله ISI رفتار مصرف کننده یا رفتار مشتری به زبان انگلیسیدانلود رایگان مقاله ISI مدیریت به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مدیریت عملکرد به زبان انگلیسیسال انتشار

مقاله انگلیسی رایگان در مورد در مورد اهمیت نتایج آماری در آزمایشات رفتار مصرف کننده – اسپرینگر ۲۰۱۸

 

مشخصات مقاله
انتشار مقاله سال ۲۰۱۸
تعداد صفحات مقاله انگلیسی ۱۱ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه اسپرینگر
نوع مقاله ISI
عنوان انگلیسی مقاله On the significance of statistically insignificant results in consumer behavior experiments
ترجمه عنوان مقاله در مورد اهمیت نتایج آماری ناچیز در آزمایشات رفتار مصرف کننده
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مدیریت، آمار
گرایش های مرتبط مدیریت عملکرد
مجله مجله آکادمی علوم بازاریابی – Journal of the Academy of Marketing Science
دانشگاه The University of Texas at Austin – Austin – USA
کلمات کلیدی تجربیات رفتار مصرف کننده، آمار F، نتایج ناچیز، شکست تجربی، شکست تئوری
کلمات کلیدی انگلیسی Consumer behavior experiments, F-statistics, Insignificant results, Experimental failure, Theory failure
شناسه دیجیتال – doi
https://doi.org/10.1007/s11747-017-0528-7
کد محصول E8428
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:
Introduction

Experimentation is the sine qua non of consumer behavior research. To illustrate, in two recent volumes of the Journal of Consumer Research (volumes 40 and 41), of the 179 research articles, 151 (or 84%) reported the results of experiments. Moreover, a majority of the articles reporting experimental research results contain multiple experiments. The prototypical experiment in consumer behavior research consists of (1) specifying (usually null) hypotheses based on some theory, (2) creating an experimental design, (3) implementing the experimental design (including empirical data collection), (4) assessing the hypotheses by means of statistical analysis, and (5) drawing inferences. Statistical analysis commonly involves an analysis of variance (ANOVA) in which a treatment effect—an experimental manipulation—is compared to an estimate of experimental Berror^ by means of an F-statistic. The significance, or lack of significance, of a calculated Fstatistic at some value of p is the fundamental basis used to test the success or failure of an experimental treatment or manipulation. If the F-statistic is significant, the null hypothesis is deemed to be rejected, and the treatment or manipulation is considered to be successful. If the F-statistic is not significant, typically a researcher mentions in passing that it was not significant, moves on to F-tests of other treatments or manipulations in the experiment, and rarely, if ever, discusses the implications of a non-significant treatment or manipulation. An exception to this common treatment was reported by Duclos et al. (2013, p. 130). Although they acknowledged that their two-way ANOVAs did not reveal any significant main or interactive effects (F-statistics were respectively .64, .05, .08, .14, 2.35, and .00 [some of which were significantly insignificant]), they noted that BWhile we could have stopped here, we nonetheless proceeded with a follow-up ANCOVA ….^ Stated somewhat differently, testing a null hypothesis by means of analysis of variance can result in one of the three outcomes. One outcome is that the F-statistic is Bstatistically significant^ in that it is greater than some theoretical value.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا