مقاله انگلیسی رایگان در مورد رویکرد محاسباتی نرم برای خلاصه سازی کلان داده ها – الزویر ۲۰۱۸

elsevier

 

مشخصات مقاله
ترجمه عنوان مقاله رویکرد محاسباتی نرم برای خلاصه سازی کلان داده ها
عنوان انگلیسی مقاله A soft computing approach to big data summarization
انتشار مقاله سال ۲۰۱۸
تعداد صفحات مقاله انگلیسی ۱۷ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF) ۲٫۶۷۵ در سال ۲۰۱۷
شاخص H_index ۱۴۴ در سال ۲۰۱۸
شاخص SJR ۱٫۱۳۸ در سال ۲۰۱۸
رشته های مرتبط ریاضی
گرایش های مرتبط محاسبات نرم
نوع ارائه مقاله ژورنال
مجله / کنفرانس مجموعه ها و سیستم های فازی – Fuzzy Sets and Systems
دانشگاه IRISA – University of Rennes – UMR – Lannion – France
کلمات کلیدی شخصی سازی داده ها؛ خلاصه زبانشناسی؛ محاسبات نرم؛ استخراج دانش؛ تجسم؛ اندازه گیری دقیق
کلمات کلیدی انگلیسی Data personalisation; Linguistic summaries; Soft computing; Knowledge extraction; Visualization; Specificity measure
شناسه دیجیتال – doi
https://doi.org/10.1016/j.fss.2018.02.017
کد محصول E9542
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
۱ Introduction
۲ Related work
۳ Preliminaries
۴ From the description space to the summarization space
۵ Representativity-driven summary visualization
۶ Experimentations
۷ Conclusion
References

بخشی از متن مقاله:
Abstract

The added value of a dataset lies in the knowledge a domain expert can extract from it. Considering the continuously increasing volume and velocity of these datasets, efficient tools have to be defined to generate meaningful, condensed and human-interpretable representations of big datasets. In the proposed approach, soft computing techniques are used to define an interface between the numerical and categorical space of data definition and the linguistic space of human reasoning. Based on the expert’s own vocabulary about the data, a personal summary composed of linguistic terms is efficiently generated and graphically displayed as a term cloud offering a synthetic view of the data properties. Using dedicated indexing strategies linking data and their subjective linguistic rewritings, exploration functionalities are provided on top of the summary to let the user browse the data. Experimentations confirm that the space change operates in linear time wrt. the size of the dataset making the approach tractable on large scale data. © ۲۰۱۸ Elsevier B.V. All rights reserved.

Introduction

Data analysis is a crucial task at the center of many professional activities and now constitutes a support for decision making, communicating and reporting. Considering the continuously increasing volume and velocity of these datasets, domain experts (as insurers, data journalists, communication managers, decision makers, etc.), who are not, most of the time, data or computer scientists, need efficient tools that help them turn data into useful knowledge. This explains the recent growing interest for so-called Agile Business Intelligence (ABI) systems that reconsider classical data integration processes to favor pragmatic approaches that make domain experts self-reliant in the analysis of raw data. A dataset generally consists of a large collection of items described by numerical and categorical attributes. A way to assist experts in their fastidious task of data-to-knowledge translation is to define efficient strategies that generate meaningful, condensed and human-interpretable representations of the data. To be very useful, such representations should give an insight into the data properties and make it easy for the domain expert to identify the most representative properties of the dataset. In this sense, when a dataset is so large that it cannot be easily perused and analyzed by the user, data summarization is of a particular interest to obtain a big picture of the data distribution on the different dimensions. Such a summary should also offer exploration functionalities to let the expert interactively browse the dataset from its summary and discover interesting properties possessed by different data subsets.

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *