مشخصات مقاله | |
عنوان مقاله | SVM Based Feature Set Analysis in Dynamic Malayalam Handwritten Character Recognition |
ترجمه عنوان مقاله | تجزیه و تحلیل مجموعه ویژگی مبتنی بر ماشین بردار پشتیبان در تشخیص کاراکتر دست خط مالایایی |
فرمت مقاله | |
نوع مقاله | ISI |
سال انتشار | مقاله سال 2015 |
تعداد صفحات مقاله | 6 صفحه |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم ها و محاسبات و هوش مصنوعی |
مجله | کنفرانس بین المللی کاربرد های پردازش سیگنال و تصویر – Signal and Image Processing Applications |
دانشگاه | آزمایشگاه پردازش سیگنال و ارتباطات، دانشکده مهندسی دولتی |
کد محصول | 7769 |
نشریه | IEEE |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
خرید ترجمه این مقاله | خرید ترجمه این مقاله |
بخشی از متن مقاله: |
چکیده
تشخیص کاراکتر دست خط به صورت دینامیک یا آنلاین یک حوزه چالش برانگیز در واسط های کامپیوتر و انسان می باشد . زمانی که مجموعه داده شامل شباهت و پیچیدگی در شیوه های حرف زدن ، تعداد حرف ها و تغیرات مشخصه های حرف ها می باشد ، نرخ موفقیت دسته بندی تکنیک های جاری کاهش می یابد . مالایایی یک نوع گویش زبانی پیچیده جنوب هندوستان می باشد که در حدود 35 میلیون نفر بویژه در جزایر لاکشادوید و کرالا به این زبان صحبت می کنند . الگوی دسته بندی مبتنی بر ماشین های بردار پشتیبان در این مقاله برای بهبود دقت دسته بندی و تشخیص آنلاین کاراکتر های دست خط مالایایی پیشنهاد می گردد . دسته کننده ماشین بردار پشتیبان در سطح دانشگاهی و صنعت معروف می باشد . این دسته کننده ها در مسئله عملی جهان واقعی مناسب تر می باشد اگر ما دارای نگرانی مهمی در مورد سرعت تشخیص در هر کاراکتر می باشیم . عمکلرد برای شالوده های متفاوت ماشین بردار پشتیبان مورد مطالعه قرار می گیرد . واسط کاربر گرافیکی برای خواندن و نمایش کاراکتر توسعه یافته بود . شیوه های متفاوت نوشتن برای هر 44 حرف الفباء پذیرفته می شوند . ویژگی های مختلف استخراج می گردند و بعد از پیش پردازش نمونه های داده ورودی برای دسته بندی مورد استفاده قرار می گیرند . انتخاب مشخصه از طریق انتخاب ترکیب های متفاوت ویژگی های استخراج شده در برابر دقت انجام گرفته اند . بالاترین دقت شناخت 97 درصدی برای بهترین ویژگی های منتخب در ماشین بردار پشتیبان با شالوده چند جمله ای بدست می آید . سرعت تشخیص یک حرف تکی در 0.52 ثانیه بدست می آید . |