مشخصات مقاله | |
ترجمه عنوان مقاله | اینترنت اشیا برای مراقبت از بیماری های دمانس |
عنوان انگلیسی مقاله | The Internet of Things for Dementia Care |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 10 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.929 در سال 2017 |
شاخص H_index | 101 در سال 2018 |
شاخص SJR | 0.379 در سال 2018 |
رشته های مرتبط | پزشکی، فناوری اطلاعات |
گرایش های مرتبط | انفورماتیک پزشکی، اینترنت و شبکه های گسترده |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | محاسبات اینترنتی – IEEE Computing Internet |
دانشگاه | University of Surrey |
شناسه دیجیتال – doi |
https://doi.org/10.1109/MIC.2018.112102418 |
کد محصول | E9835 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
TIHM INFRASTRUCTURE DATA INTEROPERABILITY AND INTEGRATION DATA GOVERNANCE AND ANALYSIS USER INTERFACE CONCLUSION |
بخشی از متن مقاله: |
TIHM INFRASTRUCTURE
This section describes the design and implementation of our IoT architecture, which is capable of combining different, yet complementary, technologies to develop novel functionalities. Our system collects real-time data from multiple publishers and delivers the data to the TIHM back-end system. At this stage, an advanced analytics tool is used to process the integrated data and generate insights and notifications based on the status of patients. Note that clinical knowledge and experience has been used to set the parameters for alerting and notifications. The high-level overview of the interactions in TIHM architecture is presented in Figure 1. As shown, it is composed of four main parts: • sensors installed at homes; • SMEs’ back-end servers; • the TIHM back-end system, including the storage and analysis servers; and • the user interface for data visualization and management. At a finer level of detail, several passive sensors are embedded in patients’ homes to collect data from the environment and surroundings, such as humidity and temperature conditions, appliance usage, etc. In addition, medical devices and wearable technologies are used to measure important physiological parameters, such as blood pressure, pulse, etc. All the sensor and medical devices record and send the data to their corresponding gateways over Wi-Fi or Bluetooth or, in exceptional cases, via auxiliary interfaces of such a device. Gateways relay these data to the companies’ back-end systems over GPRS (General Packet Radio Service), SigFox, or home broadband. At this stage, all participating companies comply with a common JSON (JavaScript Object Notation) data model for the TIHM project, which is defined in the next section. This is followed by the communication with the TIHM back-end system through a publish/subscribe (pub/sub) or message queue (MQ) model; specifically, the advanced message queuing protocol (AMQP) is employed. These data are then validated and persisted to a NoSQL Mongo database for further analysis. To make the analyzed data more readily accessible and consumable by remote users (mainly the clinical-monitoring team), a web-based graphical interface has been implemented with defined privilege levels to access both real-time and historical data12—comprehensive details are included in the section “User Interface.” Observe that the MQ is the core exchange for TIHM messages and is able to receive, process, and reply to requests coming from the companies’ back-ends, TIHM back-end system, and user interface. |