دانلود رایگان مقالات اسپرینگر - springerدانلود رایگان مقالات سال 2018دانلود رایگان مقاله ISI تجارت الکترونیک به زبان انگلیسیدانلود رایگان مقاله ISI خرید آنلاین به زبان انگلیسیدانلود رایگان مقاله ISI مدیریت به زبان انگلیسی سال 2022 و 2023سال انتشار

مقاله انگلیسی رایگان تجدیدنظر افراد در مورد تجربیات خرید آنلاین خود – اسپرینگر ۲۰۱۸

 

مشخصات مقاله
انتشار مقاله سال ۲۰۱۸
تعداد صفحات مقاله انگلیسی  ۲۷ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه اسپرینگر
نوع مقاله ISI
عنوان انگلیسی مقاله Towards exploring when and what people reviewed for their online shopping experiences
ترجمه عنوان مقاله چه افرادی و چه زمانی برای تجربیات خرید آنلاین خود تجدید نظر می کنند
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مدیریت
گرایش های مرتبط تجارت الکترونیک
مجله مجله علوم و مهندسی سیستم ها – Journal of Systems Science and Systems Engineering
دانشگاه University of Electronic Science and Technology of China – China
کلمات کلیدی تجارت الکترونیک، بررسی آنلاین، دینامیک بررسی، نظر کاوی
کلمات کلیدی انگلیسی E-commerce, online review, review dynamics, opinion mining
شناسه دیجیتال – doi
https://doi.org/10.1007/s11518-016-5318-0
کد محصول E8386
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:
۱٫ Introduction

Online review, a form of customers’ feedback on E-commerce, has become an important channel for both consumers and producers to provide product information from a customer’s perspective (Park and Lee 2009, Zhu and Zhang 2010). It has been witnessed that Web 2.0 technologies have attracted an increasing number of people with various backgrounds to become active online writers and viewers (Cheng et al. 2012). As a result, a great number of reviews have been generated with different motivations (Kraut and Resnick 2012), in which the reviewing behaviors are more diverse and the language words used in reviewed contents are sparser than those generated by people who have similar backgrounds and a pure motivation for sharing information of product quality. Therefore, to understand information more precisely from massive and various online reviews, a feasible way is not only to explore what users said, but also why they said. However, in real applications, reviewers will not explain why they post reviews online, especially for those extrinsic reasons – such as status, financial reward, or social influence. Fortunately, part of a reviewer’s motivations can be observed by her/his reviewing behaviors, such as reviewing quality (posting a long or short review), promptness (posting a quick or lazy review), and attitude (posting review actively or passively) (Liu et al. 2008). By observing actual reviewing behaviors, we can infer immediate reasons why they review, even if they only write occasional reviews (Brown 2012). For example, if one were offended, or staffs were rude in online shopping process, people might take a quick reaction to express a grievance or warn others. Thus, the task of exploring reviewers’ behaviors (how they said) and further understanding reviewers’ exact opinions from massive and sparse online reviews becomes more important, especially, when these reviews are associated with some specific reviewing behaviors. In literature, most research has focused on mining the contents of reviews, for opinion (feature) extraction (Dave et al. 2003, Hu and Liu 2004, Pang and Lee 2008, Zhang et al. 2010), sentiment analysis (Cui 2006, Pang and Lee 2008), collaborative filtering (Zhang et al. 2014, Almahairi et al. 2015), and sales forecasting (Chintagunta et al. 2010, Yu et al. 2012). Whereas, customers’ reviewing behaviors have been overlooked. In this work, we employ the reviewing behavior dynamics method and the review-feature-based opinion mining method to explore the relationship between people’s reviewing manners (i.e., timely) and their reviewing opinions (what they talk about). The main contributions of this paper lie in two aspects. First, we present an analytical framework to explore the customers’ reviewing behavior dynamics. Second, we present a review-to-feature mapping method to solve the opinion mining problem for exploring the aspects from a novel perspective of customer purchasing-reviewing behavior similarity. The rest of this paper is organized as follows. Section 2 presents related work. Section 3 sketches out the methodology in detail. Section 4 shows and discusses the experimental results. Section 5 summarizes some managerial insights and Section 6 concludes the paper.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا