مقاله انگلیسی رایگان در مورد ایمن سازی ارتباطات در سیستم های فعال IoT – تیلور و فرانسیس ۲۰۱۸

مقاله انگلیسی رایگان در مورد ایمن سازی ارتباطات در سیستم های فعال IoT – تیلور و فرانسیس ۲۰۱۸

 

مشخصات مقاله
انتشار مقاله سال ۲۰۱۸
تعداد صفحات مقاله انگلیسی ۱۲ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه تیلور و فرانسیس
نوع نگارش مقاله مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نوع مقاله ISI
نمایه (index)
Scopus – Master Journal List – JCR
ایمپکت فاکتور(IF)
۱٫۲۲۶ در سال ۲۰۱۷
شاخص H_index
۲۲ در سال ۲۰۱۹
شاخص SJR
۰٫۲۸۰ در سال ۲۰۱۷
شناسه ISSN
۰۲۵۶-۴۶۰۲
شاخص Quartile (چارک)
Q2 در سال ۲۰۱۷
عنوان انگلیسی مقاله Securing Multicast Group Communication in IoT-Enabled Systems
ترجمه عنوان مقاله ایمن سازی ارتباطات گروه چندپخشی در سیستم های فعال IoT
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مهندسی کامپیوتر، فناوری اطلاعات و ارتباطات، فناوری اطلاعات
گرایش های مرتبط اینترنت و شبکه های گسترده، دیتا و امنیت شبکه، امنیت اطلاعات، رایانش ابری
نوع ارائه مقاله
ژورنال
مجله بررسی تکنیکی آی ای تی ای – IETE Technical Review
دانشگاه Department of Computer Science – Indian Institute of Technology – India
کلمات کلیدی رمزگذاری مبتنی بر مشخصه؛ اینترنت اشیا؛ پروتکل های امنیتی IoT؛ امنیت چندپخشی؛ منابع محدود شده
کلمات کلیدی انگلیسی Attribute-based encryption; Internet of Things; IoT security protocols; Multicast security; Resourceconstrained devices
شناسه دیجیتال – doi https://doi.org/10.1016/j.mar.2016.10.001
کد محصول E6857
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:
۱٫ INTRODUCTION

“Internet of Things” (IoT) is going to change the world in a significant way in the near future. It is going to be inherently applied to our day-to-day living and make our lives much easier. As today no one can think of a single day without Internet, a day would come when we cannot think of a single moment without the aid of IoT. Today’s Internet is mostly limited to devices like personal computers, laptops, smartphones, tablets, etc. But the idea of IoT is to have the things around us communicate among each other and the Internet. So the smallest day-today objects we regularly use, say, for example, a piece of pen, will be connected to the Internet and order a refill on its own when it is out of ink. Things will have the sufficient intelligence to interact with other things, the environment around them, and of course human beings [1–۳]. A lot of research is, therefore, taking place in this field from both industry and academia. And with so many different technologies available today from Zigbee, WiFi, Bluetooth, NFC, LPWANs, and 5G cellular technologies, IoT frameworks are turned into a reality with possible applications in smart homes, smart environment, smart agriculture, etc. [4,5]. Meanwhile, there are a number of challenges of which security is the major concern. As everything gets connected to the Internet, devices get more prone to risk of threats and malicious attacks. People or other objects may post harmful contents to these networks, steal data from these devices, and make improper and illegal use of these devices [6]. So design of the security aspects in parallel with the networking solutions is essential for the safer and popular deployment [7,8]. The next challenge is the constraint in terms of available resources on these devices. As these devices have very less memory, processing capabilities, communication bandwidth, and mostly powered by batteries, light-weight protocols are a must to conserve energy. Third, as they are small and cheap, there are billions of those devices communicating with one another. Further, in many applications, there is the necessity of multicast (one-to-many) communications. As an example application, let us consider that car manufacturing company wants to have a ubiquitous connectivity to all its manufactured cars and post updates to these cars as and when required on demand. Say the company has already launched a batch of cars and wants to upgrade the firmware for the pollution controller installed in these cars. That batch size is unknown and may be in thousands and does not define a group or of any particular model. But the company knows that they all have the same engine model and manufactured in a particular time frame. These two attributes define the set of cars destined for the update and is sufficient to work in an Attribute-Based Encryption (ABE) scheme. Also, cars from other manufacturers should be unaware of this update and the data in this case has to be secretly and confidentially shipped to only those destined cars. The company sends a multicast request with the updated firmware to be installed on these sets of cars. Thus at any point of time, the company has full definition of how to address the cars and with what data to be fetched to them seamlessly. Also, it is to be noted that the company need not be knowing each and every individual identifier of the cars and hence forms a scalable environment. It generalizes the destined cars by some set of characteristics or attributes. To address this issue, we exploit the characteristics of ABE mechanism in the proposed design.

ثبت دیدگاه